957 resultados para F6 - Economic Impacts of Globalization
Resumo:
In recent years, the role of human activities in changing sediment yield has become more apparent for the construction of hydraulic engineering and water conservation projections in the Upper Yangtze River, but it has not been evaluated at the macro scale. Taking Sichuan Province and Chongqing City as an example, this paper studies the relationship between socio-economic factors and sediment yield in the Upper Yangtze River based on section data in 1989 and 2007. The results show that sediment yield is significantly correlated with population density and cultivated area, in which the former appears to be more closely related to sediment yield. Moreover, in the relation of sediment yield vs. population density, a critical value of population density exists, below which the sediment yield increases with the increase of population density and over which the sediment yield increases with the decrease of population density. The phenomenon essentially reflects the influence of natural factors, such as topography, precipitation and soil property, and some human activities on sediment yield. The region with a higher population density than critical value is located in the east of the study area and is characterized by plains, hills and low mountains, whereas the opposite is located in the west and characterized by middle and high mountains. In the eastern region, more people live on the lands with a low slope where regional soil erosion is slight; therefore, sediment yield is negatively related with population density. In contrast, in the western region, the population tends to aggregate in the areas with abundant soil and water resources which usually lead to a higher intensity of natural erosion, and in turn, high-intensity agricultural practices in these areas may further strengthen local soil erosion. It is also found that population tends to move from the areas with bad environment and high sediment yield to the areas with more comfortable environment and less sediment yield. The natural factors have greater influence on sediment yield of western region than that of eastern region. Generally, the natural factors play a dominant role on sediment yield in the Upper Yangtze River.
Resumo:
Coastal Regulation Zone (CRZ) notification was issued by the Ministry of Environment and Forest of Government of India in February 1991 as a part of the Environmental Protection Act of 1986 to protect the coast from eroding and to preserve its natural resources. The initial notification did not distinguish the variability and diversity of various coastal states before enforcing it on the various states and Union Territories. Impact assessments were not carried out to assess its impact on socio-economic life of the coastal population. For the very same reason, it was unnoticed or rather ignored till 1994 when the Supreme Court of India made a land mark judgment on the fate of the coastal aquaculture which by then had established as an economically successful industry in many South Indian States. Coastal aquaculture in its modern form was a prohibited activity within CRZ. Lately, only various stakeholders of the coast realized the real impact of the CRZ rules on their property rights andbusiness. To overcome the initial drawbacks several amendments were made in the regulation to suit regional needs. In 1995, another great transformation took place in the State of Kerala as a part of the reorganization of the local self government institutions into a decentralized three tier system called ‘‘Panchayathi Raj System’’. In 1997, the state government also decided to transfer the power with the required budget outlay to the grass root level panchayats (villages) and municipalities to plan and implement the various projects in their localities with the full participation of the local people by constituting Grama Sabhas (Peoples’ Forum). It is called the ‘‘Peoples’ Planning Campaign’’(Peoples’ Participatory Programme—PPP for Local Level Self-Governance). The management of all the resources including the local natural resources was largely decentralized to the level of local communities and villages. Integrated, sustainable coastal zone management has become the concern of the local population. The paper assesses the socio-economic impact of the centrally enforced CRZ and the state sponsored PPP on the coastal community in Kerala and suggests measures to improve the system and living standards of the coastal people within the framework of CRZ.
Resumo:
This paper presents a preliminary assessment of the relative effects of rate of climate change (four Representative Concentration Pathways - RCPs), assumed future population (five Shared Socio-economic Pathways - SSPs), and pattern of climate change (19 CMIP5 climate models) on regional and global exposure to water resources stress and river flooding. Uncertainty in projected future impacts of climate change on exposure to water stress and river flooding is dominated by uncertainty in the projected spatial and seasonal pattern of change in climate. There is little clear difference in impact between RCP2.6, RCP4.5 and RCP6.0 in 2050, and between RCP4.5 and RCP6.0 in 2080. Impacts under RCP8.5 are greater than under the other RCPs in 2050 and 2080. For a given RCP, there is a difference in the absolute numbers of people exposed to increased water resources stress or increased river flood frequency between the five SSPs. With the ‘middle-of-the-road’ SSP2, climate change by 2050 would increase exposure to water resources stress for between approximately 920 and 3400 million people under the highest RCP, and increase exposure to river flood risk for between 100 and 580 million people. Under RCP2.6, exposure to increased water scarcity would be reduced in 2050 by 22-24%, compared to impacts under the RCP8.5, and exposure to increased flood frequency would be reduced by around 16%. The implications of climate change for actual future losses and adaptation depend not only on the numbers of people exposed to changes in risk, but also on the qualitative characteristics of future worlds as described in the different SSPs. The difference in ‘actual’ impact between SSPs will therefore be greater than the differences in numbers of people exposed to impact.
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Incluye Bibliografía
Resumo:
The Caribbean region remains highly vulnerable to the impacts of climate change. In order to assess the social and economic consequences of climate change for the region, the Economic Commission for Latin America and the Caribbean( ECLAC) has developed a model for this purpose. The model is referred to as the Climate Impact Assessment Model (ECLAC-CIAM) and is a tool that can simultaneously assess multiple sectoral climate impacts specific to the Caribbean as a whole and for individual countries. To achieve this goal, an Integrated Assessment Model (IAM) with a Computable General Equilibrium Core was developed comprising of three modules to be executed sequentially. The first of these modules defines the type and magnitude of economic shocks on the basis of a climate change scenario, the second module is a global Computable General Equilibrium model with a special regional and industrial classification and the third module processes the output of the CGE model to get more disaggregated results. The model has the potential to produce several economic estimates but the current default results include percentage change in real national income for individual Caribbean states which provides a simple measure of welfare impacts. With some modifications, the model can also be used to consider the effects of single sectoral shocks such as (Land, Labour, Capital and Tourism) on the percentage change in real national income. Ultimately, the model is envisioned as an evolving tool for assessing the impact of climate change in the Caribbean and as a guide to policy responses with respect to adaptation strategies.
Resumo:
The main objective of the present study was to determine the value of impacts due to climate change on the agricultural sector in the Caribbean under the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios A2 and B2 scenarios. More specifically, the study aimed to evaluate the direction and magnitude of the potential impacts of climate change on aggregate agricultural output and other key agricultural indicators. Further, the study forecast changes in income for agricultural output for key subsectors under the A2 and B2 scenarios, from 2011 to 2050. It analysed the benefits and costs of the key adaptation strategies identified by Caribbean Governments.
Resumo:
Climate change poses special challenges for Caribbean decision makers related to the uncertainties inherent in future climate projections and the complex linkages between climate change, physical and biological systems, and socioeconomic sectors. At present, however, the Caribbean subregion lacks the adaptive capacity needed to address these challenges. The present report assesses the economic and social impacts of climate change on the coastal and marine sector in the Caribbean until 2050. It aims both to provide Caribbean decision makers with cutting edge information on the vulnerability to climate change of the subregion, and to facilitate the development of adaptation strategies informed by both local experience and expert knowledge.
Resumo:
The present report assesses the economic and social impacts of climate change on the energy sector in Antigua and Barbuda, the Bahamas, Barbados, Belize, Cuba, Dominica, the Dominican Republic, Haiti, Grenada, Guyana, Jamaica, Saint Kitts and Nevis, Saint Vincent and the Grenadines, Saint Lucia, Suriname, and Trinidad and Tobago. In the study, the Artificial Neural Network methodology was employed to model the relationship between climate change and energy demand. The viability of the actions proposed were assessed using cost benefit analyses based on models from the National Renewable Energy Laboratory (NREL) of the United States of America.
Resumo:
Climate change affects the fundamental bases of good human health, which are clean air, safe drinking water, sufficient food, and secure shelter. Climate change is known to impact health through three climate dimensions: extreme heat, natural disasters, and infections and diseases. The temporal and spatial climatic changes that will affect the biology and ecology of vectors and intermediate hosts are likely to increase the risks of disease transmission. The greatest effect of climate change on disease transmission is likely to be observed at the extremes of the range of temperatures at which transmission typically occurs. Caribbean countries are marked by unique geographical and geological features. When combined with their physical, infrastructural development, these features make them relatively more prone to negative impacts from changes in climatic conditions. The increased variability of climate associated with slow-moving tropical depressions has implications for water quality through flooding as well as hurricanes. Caribbean countries often have problems with water and sanitation. These problems are exacerbated whenever there is excess rainfall, or no rainfall. The current report aims to prepare the Caribbean to respond better to the anticipated impact of climate change on the health sector, while fostering a subregional Caribbean approach to reducing carbon emissions by 2050. It provides a major advance on the analytical and contextual issues surrounding the impact of climate change on health in the Caribbean by focusing on the vector-borne and waterborne diseases that are anticipated to be impacted directly by climate change. The ultimate goal is to quantify both the direct and indirect costs associated with each disease, and to present adaptation strategies that can address these health concerns effectively to benefit the populations of the Caribbean.
Resumo:
There are significant, fundamental changes taking place in global air and sea surface temperatures and sea levels. The Fourth Assessment Report of the Intergovernmental Panel on Climate Change noted that many of the warmest years on the instrumental record of global surface temperatures have occurred within the last twelve years, i.e. 1995-2006 (IPCC, 2007). The Caribbean tourism product is particularly vulnerable to climate change. On the demand side, mitigation measures in other countries – for example, measures to reduce the consumption of fossil fuels – could have implications for airfares and cruise prices and, therefore, for the demand for travel, particularly to long-haul destinations such as the Caribbean (Clayton, 2009). On the supply side, sea level rise will cause beaches to disappear and damage coastal resorts. Changes in the frequency and severity of hurricanes are likely to magnify that damage. Other indirect impacts on the tourism product include rising insurance premiums and competition for water resources (Cashman, Cumberbatch, & Moore, 2012). The present report has used information on historic and future Caribbean climate data to calculate that the Caribbean tourism climatic index (TCI) ranges from −20 (impossible) to +100 (ideal). In addition to projections for the Caribbean, the report has produced TCI projections for the New York City area (specifically, Central Park), which have been used as comparators for Caribbean country projections. The conditions in the source market provide a benchmark against which visitors may judge their experience in the tourism destination. The historical and forecasted TCIs for the Caribbean under both the A2 and B2 climate scenarios of the IPCC suggest that climatic conditions in the Caribbean are expected to deteriorate, and are likely to become less conducive to tourism. More specifically, the greatest decline in the TCI is likely to occur during the northern hemisphere summer months from May to September. At the same time, the scenario analysis indicates that home conditions during the traditional tourist season (December – April) are likely to improve, which could make it more attractive for visitors from these markets to consider ‘staycations’ as an alternative to overseas trips.
Resumo:
The Caribbean is not homogenous with regard to water resources. The Caribbean climate can be characterized as tropical rainy, with two well-defined seasons, one, rainy, and another, less rainy: these characteristics have specificities according to the geographical location of each country. The rainy, tropical character of the Caribbean climate may suggest that there are enough water resources to satisfy life requirements. Notwithstanding, the availability and distribution of water depends on geological and geographical factors that—given the insular character and characteristics of each country—make water resources both vulnerable and limited.
Resumo:
Caribbean policymakers are faced with special challenges from climate change and these are related to the uncertainties inherent in future climate projections and the complex linkages among climate change, physical and biological systems and socioeconomic sectors. The impacts of climate change threaten development in the Caribbean and may well erode previous gains in development as evidenced by the increased incidence of climate migrants internationally. This brief which is based on a recent study conducted by the Economic Commission for Latin America and the Caribbean (LC/CAR/L.395)1 provides a synthesis of the assessment of the economic and social impacts of climate change on the coastal and marine sector in the Caribbean which were undertaken. It provides Caribbean policymakers with cutting-edge information on the region’s vulnerability and encourages the development of adaptation strategies informed by both local experience and expert knowledge. It proceeds from an acknowledgement that the unique combination of natural resources, ecosystems, economic activities, and human population settlements of the Caribbean will not be immune to the impacts of climate change, and local communities, countries and the subregion as a whole need to plan for, and adapt to, these effects. Climate and extreme weather hazards related to the coastal and marine sector encompass the distinct but related factors of sea level rise, increasing coastal water temperatures, tropical storms and hurricanes. Potential vulnerabilities for coastal zones include increased shoreline erosion leading to alteration of the coastline, loss of coastal wetlands, and changes in the abundance and diversity of fish and other marine populations. The study examines four key themes in the analysis: climate, vulnerability, economic and social costs associated with climate change impacts, and adaptive measures.