983 resultados para Extracting information


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The organization of non-crystalline polymeric materials at a local level, namely on a spatial scale between a few and 100 a, is still unclear in many respects. The determination of the local structure in terms of the configuration and conformation of the polymer chain and of the packing characteristics of the chain in the bulk material represents a challenging problem. Data from wide-angle diffraction experiments are very difficult to interpret due to the very large amount of information that they carry, that is the large number of correlations present in the diffraction patterns.We describe new approaches that permit a detailed analysis of the complex neutron diffraction patterns characterizing polymer melts and glasses. The coupling of different computer modelling strategies with neutron scattering data over a wide Q range allows the extraction of detailed quantitative information on the structural arrangements of the materials of interest. Proceeding from modelling routes as diverse as force field calculations, single-chain modelling and reverse Monte Carlo, we show the successes and pitfalls of each approach in describing model systems, which illustrate the need to attack the data analysis problem simultaneously from several fronts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In den letzten drei Jahrzehnten sind Fernerkundung und GIS in den Geowissenschaften zunehmend wichtiger geworden, um die konventionellen Methoden von Datensammlung und zur Herstellung von Landkarten zu verbessern. Die vorliegende Arbeit befasst sich mit der Anwendung von Fernerkundung und geographischen Informationssystemen (GIS) für geomorphologische Untersuchungen. Durch die Kombination beider Techniken ist es vor allem möglich geworden, geomorphologische Formen im Überblick und dennoch detailliert zu erfassen. Als Grundlagen werden in dieser Arbeit topographische und geologische Karten, Satellitenbilder und Klimadaten benutzt. Die Arbeit besteht aus 6 Kapiteln. Das erste Kapitel gibt einen allgemeinen Überblick über den Untersuchungsraum. Dieser umfasst folgende morphologische Einheiten, klimatischen Verhältnisse, insbesondere die Ariditätsindizes der Küsten- und Gebirgslandschaft sowie das Siedlungsmuster beschrieben. Kapitel 2 befasst sich mit der regionalen Geologie und Stratigraphie des Untersuchungsraumes. Es wird versucht, die Hauptformationen mit Hilfe von ETM-Satellitenbildern zu identifizieren. Angewandt werden hierzu folgende Methoden: Colour Band Composite, Image Rationing und die sog. überwachte Klassifikation. Kapitel 3 enthält eine Beschreibung der strukturell bedingten Oberflächenformen, um die Wechselwirkung zwischen Tektonik und geomorphologischen Prozessen aufzuklären. Es geht es um die vielfältigen Methoden, zum Beispiel das sog. Image Processing, um die im Gebirgskörper vorhandenen Lineamente einwandfrei zu deuten. Spezielle Filtermethoden werden angewandt, um die wichtigsten Lineamente zu kartieren. Kapitel 4 stellt den Versuch dar, mit Hilfe von aufbereiteten SRTM-Satellitenbildern eine automatisierte Erfassung des Gewässernetzes. Es wird ausführlich diskutiert, inwieweit bei diesen Arbeitsschritten die Qualität kleinmaßstäbiger SRTM-Satellitenbilder mit großmaßstäbigen topographischen Karten vergleichbar ist. Weiterhin werden hydrologische Parameter über eine qualitative und quantitative Analyse des Abflussregimes einzelner Wadis erfasst. Der Ursprung von Entwässerungssystemen wird auf der Basis geomorphologischer und geologischer Befunde interpretiert. Kapitel 5 befasst sich mit der Abschätzung der Gefahr episodischer Wadifluten. Die Wahrscheinlichkeit ihres jährlichen Auftretens bzw. des Auftretens starker Fluten im Abstand mehrerer Jahre wird in einer historischen Betrachtung bis 1921 zurückverfolgt. Die Bedeutung von Regentiefs, die sich über dem Roten Meer entwickeln, und die für eine Abflussbildung in Frage kommen, wird mit Hilfe der IDW-Methode (Inverse Distance Weighted) untersucht. Betrachtet werden außerdem weitere, regenbringende Wetterlagen mit Hilfe von Meteosat Infrarotbildern. Genauer betrachtet wird die Periode 1990-1997, in der kräftige, Wadifluten auslösende Regenfälle auftraten. Flutereignisse und Fluthöhe werden anhand von hydrographischen Daten (Pegelmessungen) ermittelt. Auch die Landnutzung und Siedlungsstruktur im Einzugsgebiet eines Wadis wird berücksichtigt. In Kapitel 6 geht es um die unterschiedlichen Küstenformen auf der Westseite des Roten Meeres zum Beispiel die Erosionsformen, Aufbauformen, untergetauchte Formen. Im abschließenden Teil geht es um die Stratigraphie und zeitliche Zuordnung von submarinen Terrassen auf Korallenriffen sowie den Vergleich mit anderen solcher Terrassen an der ägyptischen Rotmeerküste westlich und östlich der Sinai-Halbinsel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systems must co-evolve with their context. Reverse engineering tools are a great help in this process of required adaption. In order for these tools to be flexible, they work with models, abstract representations of the source code. The extraction of such information from source code can be done using a parser. However, it is fairly tedious to build new parsers. And this is made worse by the fact that it has to be done over and over again for every language we want to analyze. In this paper we propose a novel approach which minimizes the knowledge required of a certain language for the extraction of models implemented in that language by reflecting on the implementation of preparsed ASTs provided by an IDE. In a second phase we use a technique referred to as Model Mapping by Example to map platform dependent models onto domain specific model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Personalization has become a key factor for the success of new ICT services. However, the personal information required is not always available in a single site, but scattered in heterogeneous sources, and extracting knowledge from raw information is not an easy job. As a result, many organizations struggle to obtain knowledge on their users useful enough for their business purposes. This paper introduces a comprehensive personal data framework that opens the knowledge extraction process up to collaboration by the involvement of new actors, while enabling users to monitor and control it. The contributions have been validated in a financial services scenario where socioeconomic knowledge on some users is generated by tapping into their social network and used to assists them in raising money from their friends.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present experimental results on the measurement of fidelity decay under contrasting system dynamics using a nuclear magnetic resonance quantum information processor. The measurements were performed by implementing a scalable circuit in the model of deterministic quantum computation with only one quantum bit. The results show measurable differences between regular and complex behavior and for complex dynamics are faithful to the expected theoretical decay rate. Moreover, we illustrate how the experimental method can be seen as an efficient way for either extracting coarse-grained information about the dynamics of a large system or measuring the decoherence rate from engineered environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ERS-1 Satellite was launched in July 1991 by the European Space Agency into a polar orbit at about km800, carrying a C-band scatterometer. A scatterometer measures the amount of radar back scatter generated by small ripples on the ocean surface induced by instantaneous local winds. Operational methods that extract wind vectors from satellite scatterometer data are based on the local inversion of a forward model, mapping scatterometer observations to wind vectors, by the minimisation of a cost function in the scatterometer measurement space.par This report uses mixture density networks, a principled method for modelling conditional probability density functions, to model the joint probability distribution of the wind vectors given the satellite scatterometer measurements in a single cell (the `inverse' problem). The complexity of the mapping and the structure of the conditional probability density function are investigated by varying the number of units in the hidden layer of the multi-layer perceptron and the number of kernels in the Gaussian mixture model of the mixture density network respectively. The optimal model for networks trained per trace has twenty hidden units and four kernels. Further investigation shows that models trained with incidence angle as an input have results comparable to those models trained by trace. A hybrid mixture density network that incorporates geophysical knowledge of the problem confirms other results that the conditional probability distribution is dominantly bimodal.par The wind retrieval results improve on previous work at Aston, but do not match other neural network techniques that use spatial information in the inputs, which is to be expected given the ambiguity of the inverse problem. Current work uses the local inverse model for autonomous ambiguity removal in a principled Bayesian framework. Future directions in which these models may be improved are given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A major challenge in text mining for biomedicine is automatically extracting protein-protein interactions from the vast amount of biomedical literature. We have constructed an information extraction system based on the Hidden Vector State (HVS) model for protein-protein interactions. The HVS model can be trained using only lightly annotated data whilst simultaneously retaining sufficient ability to capture the hierarchical structure. When applied in extracting protein-protein interactions, we found that it performed better than other established statistical methods and achieved 61.5% in F-score with balanced recall and precision values. Moreover, the statistical nature of the pure data-driven HVS model makes it intrinsically robust and it can be easily adapted to other domains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the last decade, biomedicine has witnessed a tremendous development. Large amounts of experimental and computational biomedical data have been generated along with new discoveries, which are accompanied by an exponential increase in the number of biomedical publications describing these discoveries. In the meantime, there has been a great interest with scientific communities in text mining tools to find knowledge such as protein-protein interactions, which is most relevant and useful for specific analysis tasks. This paper provides a outline of the various information extraction methods in biomedical domain, especially for discovery of protein-protein interactions. It surveys methodologies involved in plain texts analyzing and processing, categorizes current work in biomedical information extraction, and provides examples of these methods. Challenges in the field are also presented and possible solutions are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Joint sentiment-topic (JST) model was previously proposed to detect sentiment and topic simultaneously from text. The only supervision required by JST model learning is domain-independent polarity word priors. In this paper, we modify the JST model by incorporating word polarity priors through modifying the topic-word Dirichlet priors. We study the polarity-bearing topics extracted by JST and show that by augmenting the original feature space with polarity-bearing topics, the in-domain supervised classifiers learned from augmented feature representation achieve the state-of-the-art performance of 95% on the movie review data and an average of 90% on the multi-domain sentiment dataset. Furthermore, using feature augmentation and selection according to the information gain criteria for cross-domain sentiment classification, our proposed approach performs either better or comparably compared to previous approaches. Nevertheless, our approach is much simpler and does not require difficult parameter tuning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clustering algorithms, pattern mining techniques and associated quality metrics emerged as reliable methods for modeling learners’ performance, comprehension and interaction in given educational scenarios. The specificity of available data such as missing values, extreme values or outliers, creates a challenge to extract significant user models from an educational perspective. In this paper we introduce a pattern detection mechanism with-in our data analytics tool based on k-means clustering and on SSE, silhouette, Dunn index and Xi-Beni index quality metrics. Experiments performed on a dataset obtained from our online e-learning platform show that the extracted interaction patterns were representative in classifying learners. Furthermore, the performed monitoring activities created a strong basis for generating automatic feedback to learners in terms of their course participation, while relying on their previous performance. In addition, our analysis introduces automatic triggers that highlight learners who will potentially fail the course, enabling tutors to take timely actions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Developments in information technology will drive the change in records management; however, it should be the health information managers who drive the information management change. The role of health information management will be challenged to use information technology to broker a range of requests for information from a variety of users, including he alth consumers. The purposes of this paper are to conceptualise the role of health information management in the context of a technologically driven and managed health care environment, and to demonstrat e how this framework has been used to review and develop the undergraduate program in health information management at the Queensland University of Technology.