932 resultados para ExternaI Time-varying Reference Consumption Level
Resumo:
This paper reviews some basic issues and methods involved in using neural networks to respond in a desired fashion to a temporally-varying environment. Some popular network models and training methods are introduced. A speech recognition example is then used to illustrate the central difficulty of temporal data processing: learning to notice and remember relevant contextual information. Feedforward network methods are applicable to cases where this problem is not severe. The application of these methods are explained and applications are discussed in the areas of pure mathematics, chemical and physical systems, and economic systems. A more powerful but less practical algorithm for temporal problems, the moving targets algorithm, is sketched and discussed. For completeness, a few remarks are made on reinforcement learning.
Resumo:
Simple models of time-varying risk premia are used to measure the risk premia in long-term UK government bonds. The parameters of the models can be estimated using nonlinear seemingly unrelated regression (NL-SUR), which permits efficient use of information across the entire yield curve and facilitates the testing of various cross-sectional restrictions. The estimated time-varying premia are found to be substantially different to those estimated using models that assume constant risk premia. © 2004 Taylor and Francis Ltd.
Resumo:
Are persistent marketing effects most likely to appear right after the introduction of a product? The authors give an affirmative answer to this question by developing a model that explicitly reports how persistent and transient marketing effects evolve over time. The proposed model provides managers with a valuable tool to evaluate their allocation of marketing expenditures over time. An application of the model to many pharmaceutical products, estimated through (exact initial) Kalman filtering, indicates that both persistent and transient effects occur predominantly immediately after a brand's introduction. Subsequently, the size of the effects declines. The authors theoretically and empirically compare their methodology with methodology based on unit root testing and demonstrate that the need for unit root tests creates difficulties in applying conventional persistence modeling. The authors recommend that marketing models should either accommodate persistent effects that change over time or be applied to mature brands or limited time windows only.
Resumo:
This paper aims to help supply chain managers to determine the value of retailer-supplier partnership initiatives beyond information sharing (IS) according to their specific business environment under time-varying demand conditions. For this purpose, we use integer linear programming models to quantify the benefits that can be accrued by a retailer, a supplier and system as a whole from shift in inventory ownership and shift in decision-making power with that of IS. The results of a detailed numerical study pertaining to static time horizon reveal that the shift in inventory ownership provides system-wide cost benefits in specific settings. Particularly, when it induces the retailer to order larger quantities and the supplier also prefers such orders due to significantly high setup and shipment costs. We observe that the relative benefits of shift in decision-making power are always higher than the shift in inventory ownership under all the conditions. The value of the shift in decision-making power is greater than IS particularly when the variability of underlying demand is low and time-dependent variation in production cost is high. However, when the shipment cost is negligible and order issuing efficiency of the supplier is low, the cost benefits of shift in decision-making power beyond IS are not significant. © 2012 Taylor & Francis.
Resumo:
We examine how the most prevalent stochastic properties of key financial time series have been affected during the recent financial crises. In particular we focus on changes associated with the remarkable economic events of the last two decades in the volatility dynamics, including the underlying volatility persistence and volatility spillover structure. Using daily data from several key stock market indices, the results of our bivariate GARCH models show the existence of time varying correlations as well as time varying shock and volatility spillovers between the returns of FTSE and DAX, and those of NIKKEI and Hang Seng, which became more prominent during the recent financial crisis. Our theoretical considerations on the time varying model which provides the platform upon which we integrate our multifaceted empirical approaches are also of independent interest. In particular, we provide the general solution for time varying asymmetric GARCH specifications, which is a long standing research topic. This enables us to characterize these models by deriving, first, their multistep ahead predictors, second, the first two time varying unconditional moments, and third, their covariance structure.
Resumo:
The popularity of online social media platforms provides an unprecedented opportunity to study real-world complex networks of interactions. However, releasing this data to researchers and the public comes at the cost of potentially exposing private and sensitive user information. It has been shown that a naive anonymization of a network by removing the identity of the nodes is not sufficient to preserve users’ privacy. In order to deal with malicious attacks, k -anonymity solutions have been proposed to partially obfuscate topological information that can be used to infer nodes’ identity. In this paper, we study the problem of ensuring k anonymity in time-varying graphs, i.e., graphs with a structure that changes over time, and multi-layer graphs, i.e., graphs with multiple types of links. More specifically, we examine the case in which the attacker has access to the degree of the nodes. The goal is to generate a new graph where, given the degree of a node in each (temporal) layer of the graph, such a node remains indistinguishable from other k-1 nodes in the graph. In order to achieve this, we find the optimal partitioning of the graph nodes such that the cost of anonymizing the degree information within each group is minimum. We show that this reduces to a special case of a Generalized Assignment Problem, and we propose a simple yet effective algorithm to solve it. Finally, we introduce an iterated linear programming approach to enforce the realizability of the anonymized degree sequences. The efficacy of the method is assessed through an extensive set of experiments on synthetic and real-world graphs.
Resumo:
Pulses with an envelope in the form of the Airy function are obtained using Green's functions in 1D and 2D in time domain. Interaction of such pulses with a dielectric layer is investigated and expressions for reflected and transmitted pulses are obtained. © 2012 EUROPEAN MICROWAVE ASSOC.
Resumo:
Pulses in the form of the Airy function as solutions to an equation similar to the Schrodinger equation but with opposite roles of the time and space variables are derived. The pulses are generated by an Airy time varying field at a source point and propagate in vacuum preserving their shape and magnitude. The pulse motion is decelerating according to a quadratic law. Its velocity changes from infinity at the source point to zero in infinity. These one dimensional results are extended to the 3D+time case for a similar Airy-Bessel pulse with the same behaviour, the non-diffractive preservation and the deceleration. This pulse is excited by the field at a plane aperture perpendicular to the direction of the pulse propagation. © 2011 IEEE.
Resumo:
Light rainfall is the baseline input to the annual water budget in mountainous landscapes through the tropics and at mid-latitudes. In the Southern Appalachians, the contribution from light rainfall ranges from 50-60% during wet years to 80-90% during dry years, with convective activity and tropical cyclone input providing most of the interannual variability. The Southern Appalachians is a region characterized by rich biodiversity that is vulnerable to land use/land cover changes due to its proximity to a rapidly growing population. Persistent near surface moisture and associated microclimates observed in this region has been well documented since the colonization of the area in terms of species health, fire frequency, and overall biodiversity. The overarching objective of this research is to elucidate the microphysics of light rainfall and the dynamics of low level moisture in the inner region of the Southern Appalachians during the warm season, with a focus on orographically mediated processes. The overarching research hypothesis is that physical processes leading to and governing the life cycle of orographic fog, low level clouds, and precipitation, and their interactions, are strongly tied to landform, land cover, and the diurnal cycles of flow patterns, radiative forcing, and surface fluxes at the ridge-valley scale. The following science questions will be addressed specifically: 1) How do orographic clouds and fog affect the hydrometeorological regime from event to annual scale and as a function of terrain characteristics and land cover?; 2) What are the source areas, governing processes, and relevant time-scales of near surface moisture convergence patterns in the region?; and 3) What are the four dimensional microphysical and dynamical characteristics, including variability and controlling factors and processes, of fog and light rainfall? The research was conducted with two major components: 1) ground-based high-quality observations using multi-sensor platforms and 2) interpretive numerical modeling guided by the analysis of the in situ data collection. Findings illuminate a high level of spatial – down to the ridge scale - and temporal – from event to annual scale - heterogeneity in observations, and a significant impact on the hydrological regime as a result of seeder-feeder interactions among fog, low level clouds, and stratiform rainfall that enhance coalescence efficiency and lead to significantly higher rainfall rates at the land surface. Specifically, results show that enhancement of an event up to one order of magnitude in short-term accumulation can occur as a result of concurrent fog presence. Results also show that events are modulated strongly by terrain characteristics including elevation, slope, geometry, and land cover. These factors produce interactions between highly localized flows and gradients of temperature and moisture with larger scale circulations. Resulting observations of DSD and rainfall patterns are stratified by region and altitude and exhibit clear diurnal and seasonal cycles.
Resumo:
In this paper we use some classical ideas from linear systems theory to analyse convolutional codes. In particular, we exploit input-state-output representations of periodic linear systems to study periodically time-varying convolutional codes. In this preliminary work we focus on the column distance of these codes and derive explicit necessary and sufficient conditions for an (n, 2, 1) periodically time-varying convolutional code to have Maximum Distance Profile (MDP).
Resumo:
This paper provides evidence on the sources of co-movement in monthly US and UK stock price movements by investigating the role of macroeconomic and financial variables in a bivariate system with time-varying conditional correlations. Crosscountry communality in response is uncovered, with changes in the US Federal Funds rate, UK bond yields and oil prices having similar negative effects in both markets. Other variables also play a role, especially for the UK market. These effects do not, however, explain the marked increase in cross-market correlations observed from around 2000, which we attribute to time variation in the correlations of shocks to these markets. A regime-switching smooth transition model captures this time variation well and shows the correlations increase dramatically around 1999-2000. JEL classifications: C32, C51, G15 Keywords: international stock returns, DCC-GARCH model, smooth transition conditional correlation GARCH model, model evaluation.
Resumo:
This paper presents a technique to estimate and model patient-specific pulsatility of cerebral aneurysms over onecardiac cycle, using 3D rotational X-ray angiography (3DRA) acquisitions. Aneurysm pulsation is modeled as a time varying-spline tensor field representing the deformation applied to a reference volume image, thus producing the instantaneousmorphology at each time point in the cardiac cycle. The estimated deformation is obtained by matching multiple simulated projections of the deforming volume to their corresponding original projections. A weighting scheme is introduced to account for the relevance of each original projection for the selected time point. The wide coverage of the projections, together with the weighting scheme, ensures motion consistency in all directions. The technique has been tested on digital and physical phantoms that are realistic and clinically relevant in terms of geometry, pulsation and imaging conditions. Results from digital phantomexperiments demonstrate that the proposed technique is able to recover subvoxel pulsation with an error lower than 10% of the maximum pulsation in most cases. The experiments with the physical phantom allowed demonstrating the feasibility of pulsation estimation as well as identifying different pulsation regions under clinical conditions.
Resumo:
This work consists of three essays investigating the ability of structural macroeconomic models to price zero coupon U.S. government bonds. 1. A small scale 3 factor DSGE model implying constant term premium is able to provide reasonable a fit for the term structure only at the expense of the persistence parameters of the structural shocks. The test of the structural model against one that has constant but unrestricted prices of risk parameters shows that the exogenous prices of risk-model is only weakly preferred. We provide an MLE based variance-covariance matrix of the Metropolis Proposal Density that improves convergence speeds in MCMC chains. 2. Affine in observable macro-variables, prices of risk specification is excessively flexible and provides term-structure fit without significantly altering the structural parameters. The exogenous component of the SDF is separating the macro part of the model from the term structure and the good term structure fit has as a driving force an extremely volatile SDF and an implied average short rate that is inexplicable. We conclude that the no arbitrage restrictions do not suffice to temper the SDF, thus there is need for more restrictions. We introduce a penalty-function methodology that proves useful in showing that affine prices of risk specifications are able to reconcile stable macro-dynamics with good term structure fit and a plausible SDF. 3. The level factor is reproduced most importantly by the preference shock to which it is strongly and positively related but technology and monetary shocks, with negative loadings, are also contributing to its replication. The slope factor is only related to the monetary policy shocks and it is poorly explained. We find that there are gains in in- and out-of-sample forecast of consumption and inflation if term structure information is used in a time varying hybrid prices of risk setting. In-sample yield forecast are better in models with non-stationary shocks for the period 1982-1988. After this period, time varying market price of risk models provide better in-sample forecasts. For the period 2005-2008, out of sample forecast of consumption and inflation are better if term structure information is incorporated in the DSGE model but yields are better forecasted by a pure macro DSGE model.