876 resultados para Expression of lived experiences
Resumo:
Messenger RNAs coding for growth factors and receptor tyrosine kinases were measured by quantitative competitive and by semi-quantitative reverse-transcription polymerase chain reaction in whole and dissected chick inner ears. The fibroblast growth factor (FGF) receptor 1 chick embryonic kinase (CEK) 1 was expressed in all structures examined (otocyst, hatchling whole cochlea, cochlear nerve ganglion, and cochlear and vestibular sensory epithelia), although slightly more heavily in the otocyst. The related fibroblast growth factor receptors CEK 2 and 3 were preferentially expressed in the nerve ganglion and in the vestibular sensory epithelium, respectively. FGF 1 mRNA was low in early development, increasing to mature levels at around embryonic age 11 days, while FGF2, mRNA was expressed at constant levels at all ages. In response to ototoxic damage, FGF1 mRNA levels were increased in the early damaged cochlear sensory epithelium. Immunohistochemistry for CEK1 showed that normal hair cells expressed the receptor heavily on the hair cell stereocilia, while with early damage, CEK1 came to be expressed heavily on the apical surfaces of the supporting cells. In normal chicks, the CEK4 and CEK8 eph-class receptor tyrosine kinases were expressed relatively heavily by the cochlear nerve ganglion, and CEK10 was expressed relatively heavily by the cochlear hair cell sensory epithelium. The results suggest that the FGF system may be involved in the response of the cochlear epithelium to ototoxic damage. The eph-class receptor tyrosine kinase CEK10 may be involved in cell interactions in the cochlear sensory epithelium, while CEK4 and CEK8 may play a role in the cochlear innervation.
Resumo:
The effect of replacing a single codon in the N-terminal of human aryl sulfotransferase (HAST) 1 and 3 with one that is more commonly found in E. coli genes was assessed. The pKK233-2 E. coli expression vector was employed and the polymerase chain reaction (PCR) was used to introduce the 5' nucleotide substitution, at the same time maintaining the fidelity of the amino acid sequence. The data indicates that this change had a minimal effect on protein production, subcellular localization or, in the case of HAST3, catalytic activity. In general, the pKK233-2 E. coli vector has been less than optimal for expressing human sulfotransferase cDNAs. (C) 1998 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Primary sensory olfactory axons arise from the olfactory neuroepithelium that lines the nasal cavity and then project via the olfactory nerve into the olfactory bulb. The P-galactoside binding lectin, galectin-1,and its laminin ligand have been implicated in the growth of these axons along this pathway. In galectin-1 null mutant mice, a subpopulation of primary sensory olfactory axons fails to reach its targets in the olfactory bulb. In the present study we examined the spatiotemporal expression pattern of galectin-1 in normal mice in order to understand its role in the development of the olfactory nerve pathway. At E15.5, when olfactory axons have already contacted the olfactory bulb, galectin-1 was expressed in the cartilage and mesenchyme surrounding the nasal cavity but was absent from the olfactory neuroepithelium, nerve and bulb. Between E16.5 and birth galectin-1 began to be expressed by olfactory nerve ensheathing cells in the lamina propria of the neuroepithelium and nerve fibre layer. Galectin-1 was neither expressed by primary sensory neurons in the olfactory neuroepithelium nor by their axons in the olfactory nerve. Laminin, a galectin-1 ligand, also exhibited a similar expression pattern in the embryonic olfactory nerve pathway. Our results reveal that galectin-1 is dynamically expressed by glial elements within the nerve fibre layer during a discrete period in the developing olfactory nerve pathway. Previous studies have reported galectin-1 acts as a substrate adhesion molecule by cross-linking primary sensory olfactory neurons to laminin. Thus, the coordinate expression of galectin-1 and laminin in the embryonic nerve fibre layer suggests that these molecules support the adhesion and fasciculation of axons en route to their glomerular targets.
Resumo:
Previously we described activating mutations of h beta(c), the common signaling subunit of the receptors for the hematopoietic and inflammatory cytokines, GM-CSF, IL-3, and IL-5. The activated mutant, h beta(c)FI Delta, is able to confer growth factor-independent proliferation on the murine myeloid cell line FDC-P1, and on primary committed myeloid progenitors. We have used this activating mutation to study the effects of chronic cytokine receptor stimulation. Transgenic mice were produced carrying the h beta(c)FI Delta cDNA linked to the constitutive promoter derived from the phosphoglycerate kinase gene, PGK-1. Transgene expression was demonstrated in several tissues and functional activity of the mutant receptor was confirmed in hematopoietic tissues by the presence of granulocyte macrophage and macrophage colony-forming cells (CFU-GM and CFU-M) in the absence of added cytokines. All transgenic mice display a myeloproliferative disorder characterized by splenomegaly, erythrocytosis, and granulocytic and megakaryocytic hyperplasia. This disorder resembles the human disease polycythemia vera, suggesting that activating mutations in h beta(c) may play a role in the pathogenesis of this myeloproliferative disorder. In addition, these transgenic mice develop a sporadic, progressive neurological disease and display bilateral, symmetrical foci of necrosis in the white matter of brain stem associated with an accumulation of macrophages. Thus, chronic h beta(c) activation has the potential to contribute to pathological events in the central nervous system.
Resumo:
Our laboratory is interested in devising methods to identify functions for the vast numbers of arabidopsis genes now available. For this purpose, we have constructed a set of binary vectors that will allow the quick production of transgenic arabidopsis plants containing either sense or antisense copies of EST clones obtained from the PRL2 library. These vectors are based on the pSLJ series containing the bialophos resistance (BAR) gene that confers resistance to the herbicide BASTA. Tn addition, our vectors contain a 35S CaMV promoter-polylinker-nos terminator cassette that allows the direct cloning of arabidopsis ESTs in either antisense (pAOV and pAOV2) or sense (pSOV and pSOV2) orientation. We also describe the construction of two additional vectors conferring BASTA resistance and containing the pBluescript polylinker in both orientations inserted between the 35S CaMV promoter and nos terminator (pKMB and pSMB).
Resumo:
Polymerase chain reaction (PCR)-based differential display was used to screen for alterations in gene expression in the mesolimbic system of the human alcoholic brain. Total RNA was extracted from the nucleus accumbens of five alcoholic and five control brains. A selected subpopulation of mRNA was reverse-transcribed to cDNA and amplified by PCR. A differentially expressed cDNA fragment was recovered, cloned, and sequenced. Full sequence analysis of this 467 bp fragment revealed 98.2% homology with the human mitochondrial 12S rRNA gene. Dot-blot analysis showed increased expression of this gem in nucleus accumbens and hippocampus, but not in the superior frontal cortex, primary motor cortex, caudate, and pallidus/putamen In a total of eight human alcoholic brains, compared with seven control brains. A similar increased expression was observed by dot-blot analysis, using RNA from the cerebral cortex of rats chronically treated with alcohol vapor. Hybridization of a 16S rRNA oligonucleotide probe indicated that the expression of both rRNAs genes was significantly increased in nucleus accumbens. These results indicate that chronic alcohol consumption induces alteration in expression of mitochondrial genes in selected brain regions. The altered gene expression may reflect mitochondrial dysfunction In the alcohol-affected brain.
Resumo:
Background: IL-5 controls development of eosinophilia and has been shown to be involved in the pathogenesis of allergic diseases. In both atopic and nonatopic asthma, elevated IL-5 has been detected in peripheral blood and the airways. IL-5 is produced mainly by activated T cells, and its expression is regulated at the transcriptional level. Objective: This study focuses on the functional analysis of the human IL-5 (hIL-5) promoter and characterization of eis-regulatory elements and transcription factors involved in the suppression of IL-5 transcription in T cells. Methods: Methods used in this study include DNase I footprint assays, electrophoretic mobility shift assays, and functional analysis by mammalian cell transfection involving deletion analysis and site-directed mutagenesis. Results: We identified 5 protein binding regions (BRs) located within the proximal hIL-5 promoter. Functional analysis indicates that the BRs are involved in control of hIL-5 promoter activity. Two of these regions, BR3 and BR4 located at positions -102 to -73, have not previously been described as regulators of IL-5 expression in T cells. We show that the BR3 sequence contains a novel negative regulatory element located at positions -90 to -79 of the hIL-5 promoter, which binds Oct1, octamer-like, and YY1 nuclear factors. Substitution mutations, which abolished binding of these proteins to the BR3 sequence, significantly increased hIL-5 promoter activity in activated T cells. Conclusion: We suggest that Oct1, YY1, and octamer-like factors binding to the -90/-79 sequence within the proximal IL-5 promoter are involved in suppression of IL-5 transcription in T cells.
Resumo:
We describe a strategy for the selection and amplification of foreign gene expression in Chinese hamster ovary (CHO) cells employing a metallothionein gene-containing expression vector. This report describes an amplification procedure that results in an enrichment of clones exhibiting high levels of recombinant protein production and reduces the labour required for screening recombinant cell lines.
Resumo:
CD4-selective targeting of an antibody-polycation-DNA complex was investigated The complex was synthesized with the anti-CD4 monoclonal antibody B-F5, polylysine(268) (pLL) and either the pGL3 control vector containing the luciferase reporter gene or the pGeneGrip vector containing the green fluorescent protein (GFP) gene. B-F5-pLL-DNA complexes inhibited the binding of I-125-B-F5 to CD4(+) Jurkat cells, while complexes synthesised either without B-F5 or using a non-specific mouse IgG1 antibody had little or no effect Expression of the luciferase reporter gene was achieved in Jurkat cells using the B-F5-pLL-pGL3 complex and was enhanced in the presence of PMA. Negligible luciferase activity was defected with the non-specific antibody complex in Jurkat cells or with the B-F5-pLL-pGL3 complex in the CD4(-) K-562 cells. Using complexes synthesised with the pGeneGrip vector, the transfection efficiency in Jurkat and K-562 cells was examined using confocal microscopy. More than 95% of Jurkat cells expressed GFP and the level of this expression was markedly enhanced by PMA. Negligible GFP expression was seen in K-562 cells or when B-F5 was replaced by a nonspecific antibody. Using flow cytometry, fluorescein-labelled complex showed specific targeting to CD4(+) cells in a mixed cell population from human peripheral blood. These studies demonstrate the selective transfection of CD4(+) T-lymphoid cells using a polycation-based gene delivery system. The complex may provide a means of delivering anti-HIV gene therapies to CD4(+) cells in vivo.
Resumo:
The olfactory neuroepithelium is characterised by the mosaic distribution of primary olfactory neurons that express different odorant receptors and cell surface glycoconjugates. Carbohydrates are believed to form a glycocode that mediates sorting out and fasciculation of primary olfactory axons through interactions with carbohydrate-binding proteins such as galectin-1. In the present study, we describe in detail the expression pattern of galectin-1 in the developing and adult rat olfactory system. We demonstrate that galectin-1 is expressed by olfactory ensheathing cells both in olfactory nerve and within the nerve fibre layer of the olfactory bulb of the embryonic and adult rat. In the adult rat, galectin-1 was preferentially expressed by olfactory ensheathing cells in the nerve fibre layer of the ventromedial and lateral surfaces of the olfactory bulb. Galectin-1 was also expressed by subsets of periglomerular cells and granule cells, particularly in the ventromedial region of the olfactory bulb. In adult rat, the galectin-1 ligand, N-acetyl-lactosamine, was expressed by primary olfactory axons that terminated in glomeruli present in the ventromedial and lateral olfactory bulb. These results suggest that expression of galectin-1 may provide a mechanism for the sorting of subpopulations of axons in the nerve fibre layer of the olfactory bulb during development as well as play a role in the postnatal maintenance of specific glomerular connections. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The olfactory neuroepithelium is a highly plastic region of the nervous system that undergoes continual turnover of primary olfactory neurons throughout life. The mechanisms responsible for persistent growth and guidance of primary olfactory axons along the olfactory nerve are unknown. In the present study, we used antibodies against the Eph-related receptor, EphA5, to localise EphA5, and recombinant EDhA5-IgG fusion protein to localise its ligands. We found that although both EphA5 and its ligands were both expressed by primary olfactory neurons within the embryonic olfactory nerve pathway, there was no graded or complementary expression pattern. In contrast, the expression patterns altered postnatally such that primary olfactory neurons expressed the ligands, whereas the second-order olfactory neurons, the mitral cells, expressed EphA5. The role of EphA5 was analysed by blocking EphA5-ligand interactions in explant cultures of olfactory neuroepithelium using anti-EphA5 antibodies and recombinant EphA5. These perturbations reduced neurite outgrowth from explant cultures and suggest that intrafascicular axon repulsion may serve to limit adhesion and optimise conditions for axon growth. (C) 2000 Wiley-Liss, Inc.
Resumo:
The estrogen receptor alpha (ER alpha) is implicated in the development of breast cancer. The immunophilins, cyclophilin 40 (CyP40) and FKBP52, are associated with ER alpha and other steroid receptors in mutually exclusive heterocomplexes and may differentially modulate receptor activity. Since previous studies have not assessed the levels of these immunophilins in breast cancer, we examined 10 breast cancer cell lines for mRNA and protein expression of CyP40 and FKBP52 and for amplification of the CyP40 gene. In addition, 26 breast carcinomas, including seven with matched normal breast tissue, were examined for mRNA expression of both immunophilins. CyP40 and FKBP52 were ubiquitously expressed in breast cancer cell lines, but there were significant differences in their pattern of expression. FKBP52 protein levels were generally an order of magnitude greater than those for CyP40. FKBP52 mRNA expression correlated strongly with protein expression and was significantly higher in ER alpha-positive compared with ER alpha-negative cell lines. However, CyP40 mRNA expression did not correlate with protein expression, nor did expression of this immunophilin correlate with ER alpha status. Relatively high expression of CyP40 in one cell line (BT-20) could be attributed to amplification of the CyP40 gene. Both immunophilins were also ubiquitously expressed in breast carcinomas, and we demonstrate for the first time that both CyP40 and FKBP52 mRNA are overexpressed in breast tumors compared to matched normal breast controls. The overexpression of CyP40 and FKBP52, coupled with relative differences in their expression in tumors, may have important functional implications for ER alpha and other steroid receptors in breast cancer.