853 resultados para Expert Systems Building Tools
Resumo:
The ultimate criterion of success for interactive expert systems is that they will be used, and used to effect, by individuals other than the system developers. A key ingredient of success in most systems is involving users in the specification and development of systems as they are being built. However, until recently, system designers have paid little attention to ascertaining user needs and to developing systems with corresponding functionality and appropriate interfaces to match those requirements. Although the situation is beginning to change, many developers do not know how to go about involving users, or else tackle the problem in an inadequate way. This paper discusses the need for user involvement and considers why many developers are still not involving users in an optimal way. It looks at the different ways in which users can be involved in the development process and describes how to select appropriate techniques and methods for studying users. Finally, it discusses some of the problems inherent in involving users in expert system development, and recommends an approach which incorporates both ethnographic analysis and formal user testing.
Resumo:
This is the first of two articles presenting a detailed review of the historical evolution of mathematical models applied in the development of building technology, including conventional buildings and intelligent buildings. After presenting the technical differences between conventional and intelligent buildings, this article reviews the existing mathematical models, the abstract levels of these models, and their links to the literature for intelligent buildings. The advantages and limitations of the applied mathematical models are identified and the models are classified in terms of their application range and goal. We then describe how the early mathematical models, mainly physical models applied to conventional buildings, have faced new challenges for the design and management of intelligent buildings and led to the use of models which offer more flexibility to better cope with various uncertainties. In contrast with the early modelling techniques, model approaches adopted in neural networks, expert systems, fuzzy logic and genetic models provide a promising method to accommodate these complications as intelligent buildings now need integrated technologies which involve solving complex, multi-objective and integrated decision problems.
Resumo:
This article is the second part of a review of the historical evolution of mathematical models applied in the development of building technology. The first part described the current state of the art and contrasted various models with regard to the applications to conventional buildings and intelligent buildings. It concluded that mathematical techniques adopted in neural networks, expert systems, fuzzy logic and genetic models, that can be used to address model uncertainty, are well suited for modelling intelligent buildings. Despite the progress, the possible future development of intelligent buildings based on the current trends implies some potential limitations of these models. This paper attempts to uncover the fundamental limitations inherent in these models and provides some insights into future modelling directions, with special focus on the techniques of semiotics and chaos. Finally, by demonstrating an example of an intelligent building system with the mathematical models that have been developed for such a system, this review addresses the influences of mathematical models as a potential aid in developing intelligent buildings and perhaps even more advanced buildings for the future.
Resumo:
Automatic generation of classification rules has been an increasingly popular technique in commercial applications such as Big Data analytics, rule based expert systems and decision making systems. However, a principal problem that arises with most methods for generation of classification rules is the overfit-ting of training data. When Big Data is dealt with, this may result in the generation of a large number of complex rules. This may not only increase computational cost but also lower the accuracy in predicting further unseen instances. This has led to the necessity of developing pruning methods for the simplification of rules. In addition, classification rules are used further to make predictions after the completion of their generation. As efficiency is concerned, it is expected to find the first rule that fires as soon as possible by searching through a rule set. Thus a suit-able structure is required to represent the rule set effectively. In this chapter, the authors introduce a unified framework for construction of rule based classification systems consisting of three operations on Big Data: rule generation, rule simplification and rule representation. The authors also review some existing methods and techniques used for each of the three operations and highlight their limitations. They introduce some novel methods and techniques developed by them recently. These methods and techniques are also discussed in comparison to existing ones with respect to efficient processing of Big Data.
Resumo:
Expert systems have been increasingly popular for commercial importance. A rule based system is a special type of an expert system, which consists of a set of ‘if-then‘ rules and can be applied as a decision support system in many areas such as healthcare, transportation and security. Rule based systems can be constructed based on both expert knowledge and data. This paper aims to introduce the theory of rule based systems especially on categorization and construction of such systems from a conceptual point of view. This paper also introduces rule based systems for classification tasks in detail.
Resumo:
Credit scoring modelling comprises one of the leading formal tools for supporting the granting of credit. Its core objective consists of the generation of a score by means of which potential clients can be listed in the order of the probability of default. A critical factor is whether a credit scoring model is accurate enough in order to provide correct classification of the client as a good or bad payer. In this context the concept of bootstraping aggregating (bagging) arises. The basic idea is to generate multiple classifiers by obtaining the predicted values from the fitted models to several replicated datasets and then combining them into a single predictive classification in order to improve the classification accuracy. In this paper we propose a new bagging-type variant procedure, which we call poly-bagging, consisting of combining predictors over a succession of resamplings. The study is derived by credit scoring modelling. The proposed poly-bagging procedure was applied to some different artificial datasets and to a real granting of credit dataset up to three successions of resamplings. We observed better classification accuracy for the two-bagged and the three-bagged models for all considered setups. These results lead to a strong indication that the poly-bagging approach may promote improvement on the modelling performance measures, while keeping a flexible and straightforward bagging-type structure easy to implement. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The increase of computing power of the microcomputers has stimulated the building of direct manipulation interfaces that allow graphical representation of Linear Programming (LP) models. This work discusses the components of such a graphical interface as the basis for a system to assist users in the process of formulating LP problems. In essence, this work proposes a methodology which considers the modelling task as divided into three stages which are specification of the Data Model, the Conceptual Model and the LP Model. The necessity for using Artificial Intelligence techniques in the problem conceptualisation and to help the model formulation task is illustrated.
Resumo:
Planning hot forging processes is a time-consuming activity with high costs involved because of the trial-and-error iterative methods used to design dies and to choose equipment and process conditions. Some processes demand many months to produce forged parts with controlled shapes, dimensions and microstructure. This paper shows how expert systems can help engineers to reduce the time needed to design precision forged parts and dies from machined parts. The software ADHFD interfacing MS Visual Basic v.5.0 and SolidEdge v.3.0 was used to design flashless hot forged gears, chosen from families of gears. © 1998 Elsevier Science S.A. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper refers to the design of an expert system that captures a waveform through the use of an accelerometer, processes the signal and converts it to the frequency domain using a Fast Fourier Transformer to then, using artificial intelligence techniques, specifically Fuzzy Reasoning, it determines if there is any failure present in the underlying mode of the equipment, such as imbalance, misalignment or bearing defects.
Resumo:
This thesis proposes design methods and test tools, for optical systems, which may be used in an industrial environment, where not only precision and reliability but also ease of use is important. The approach to the problem has been conceived to be as general as possible, although in the present work, the design of a portable device for automatic identification applications has been studied, because this doctorate has been funded by Datalogic Scanning Group s.r.l., a world-class producer of barcode readers. The main functional components of the complete device are: electro-optical imaging, illumination and pattern generator systems. For what concerns the electro-optical imaging system, a characterization tool and an analysis one has been developed to check if the desired performance of the system has been achieved. Moreover, two design tools for optimizing the imaging system have been implemented. The first optimizes just the core of the system, the optical part, improving its performance ignoring all other contributions and generating a good starting point for the optimization of the whole complex system. The second tool optimizes the system taking into account its behavior with a model as near as possible to reality including optics, electronics and detection. For what concerns the illumination and the pattern generator systems, two tools have been implemented. The first allows the design of free-form lenses described by an arbitrary analytical function exited by an incoherent source and is able to provide custom illumination conditions for all kind of applications. The second tool consists of a new method to design Diffractive Optical Elements excited by a coherent source for large pattern angles using the Iterative Fourier Transform Algorithm. Validation of the design tools has been obtained, whenever possible, comparing the performance of the designed systems with those of fabricated prototypes. In other cases simulations have been used.
Resumo:
Teaching is a dynamic activity. It can be very effective, if its impact is constantly monitored and adjusted to the demands of changing social contexts and needs of learners. This implies that teachers need to be aware about teaching and learning processes. Moreover, they should constantly question their didactical methods and the learning resources, which they provide to their students. They should reflect if their actions are suitable, and they should regulate their teaching, e.g., by updating learning materials based on new knowledge about learners, or by motivating learners to engage in further learning activities. In the last years, a rising interest in ‘learning analytics’ is observable. This interest is motivated by the availability of massive amounts of educational data. Also, the continuously increasing processing power, and a strong motivation for discovering new information from these pools of educational data, is pushing further developments within the learning analytics research field. Learning analytics could be a method for reflective teaching practice that enables and guides teachers to investigate and evaluate their work in future learning scenarios. However, this potentially positive impact has not yet been sufficiently verified by learning analytics research. Another method that pursues these goals is ‘action research’. Learning analytics promises to initiate action research processes because it facilitates awareness, reflection and regulation of teaching activities analogous to action research. Therefore, this thesis joins both concepts, in order to improve the design of learning analytics tools. Central research question of this thesis are: What are the dimensions of learning analytics in relation to action research, which need to be considered when designing a learning analytics tool? How does a learning analytics dashboard impact the teachers of technology-enhanced university lectures regarding ‘awareness’, ‘reflection’ and ‘action’? Does it initiate action research? Which are central requirements for a learning analytics tool, which pursues such effects? This project followed design-based research principles, in order to answer these research questions. The main contributions are: a theoretical reference model that connects action research and learning analytics, the conceptualization and implementation of a learning analytics tool, a requirements catalogue for useful and usable learning analytics design based on evaluations, a tested procedure for impact analysis, and guidelines for the introduction of learning analytics into higher education.
Resumo:
Web 2.0 und soziale Netzwerke gaben erste Impulse für neue Formen der Online-Lehre, welche die umfassende Vernetzung von Objekten und Nutzern im Internet nachhaltig einsetzen. Die Vielfältigkeit der unterschiedlichen Systeme erschwert aber deren ganzheitliche Nutzung in einem umfassenden Lernszenario, das den Anforderungen der modernen Informationsgesellschaft genügt. In diesem Beitrag wird eine auf dem Konnektivismus basierende Plattform für die Online-Lehre namens “Wiki-Learnia” präsentiert, welche alle wesentlichen Abschnitte des lebenslangen Lernens abbildet. Unter Einsatz zeitgemäßer Technologien werden nicht nur Nutzer untereinander verbunden, sondern auch Nutzer mit dedizierten Inhalten sowie ggf. zugehörigen Autoren und/oder Tutoren verknüpft. Für ersteres werden verschiedene Kommunikations-Werkzeuge des Web 2.0 (soziale Netzwerke, Chats, Foren etc.) eingesetzt. Letzteres fußt auf dem sogenannten “Learning-Hub”-Ansatz, welcher mit Hilfe von Web-3.0-Mechanismen insbesondere durch eine semantische Metasuchmaschine instrumentiert wird. Zum Aufzeigen der praktischen Relevanz des Ansatzes wird das mediengestützte Juniorstudium der Universität Rostock vorgestellt, ein Projekt, das Schüler der Abiturstufe aufs Studium vorbereitet. Anhand der speziellen Anforderungen dieses Vorhabens werden der enorme Funktionsumfang und die große Flexibilität von Wiki-Learnia demonstriert.
Resumo:
Web 2.0 und soziale Netzwerke gaben erste Impulse für neue Formen der Online-Lehre, welche die umfassende Vernetzung von Objekten und Nutzern im Internet nachhaltig einsetzen. Die Vielfältigkeit der unterschiedlichen Systeme erschwert aber deren ganzheitliche Nutzung in einem umfassenden Lernszenario, das den Anforderungen der modernen Informationsgesellschaft genügt. In diesem Beitrag wird eine auf dem Konnektivismus basierende Plattform für die Online-Lehre namens “Wiki-Learnia” präsentiert, welche alle wesentlichen Abschnitte des lebenslangen Lernens abbildet. Unter Einsatz zeitgemäßer Technologien werden nicht nur Nutzer untereinander verbunden, sondern auch Nutzer mit dedizierten Inhalten sowie ggf. zugehörigen Autoren und/oder Tutoren verknüpft. Für ersteres werden verschiedene Kommunikations-Werkzeuge des Web 2.0 (soziale Netzwerke, Chats, Foren etc.) eingesetzt. Letzteres fußt auf dem sogenannten “Learning-Hub”-Ansatz, welcher mit Hilfe von Web-3.0-Mechanismen insbesondere durch eine semantische Metasuchmaschine instrumentiert wird. Zum Aufzeigen der praktischen Relevanz des Ansatzes wird das mediengestützte Juniorstudium der Universität Rostock vorgestellt, ein Projekt, das Schüler der Abiturstufe aufs Studium vorbereitet. Anhand der speziellen Anforderungen dieses Vorhabens werden der enorme Funktionsumfang und die große Flexibilität von Wiki-Learnia demonstriert.