926 resultados para Expanded austenite
Resumo:
Is there a psychological basis for teaching and learning in the context of a liberal education, and if so, what might such a psychological basis look like? Traditional teaching and assessment often emphasize remembering facts and, to some extent, analyzing ideas. Such skills are important, but they leave out of the aspects of thinking that are most important not only in liberal education, but in life, in general. In this article, I propose a theory called WICS, which is an acronym for wisdom, intelligence, and creativity, synthesized. The basic idea underlying this theory is that, through liberal education, students need to acquire creative skills and attitudes to generate new ideas about how to adapt flexibly to a rapidly changing world, analytical skills and attitudes to ascertain whether these new ideas are good ones, practical skills and attitudes to implement the new ideas and convince others of their value, and wisdom-based skills and attitudes in order to ensure that the new ideas help to achieve a common good through the infusion of positive ethical values.
Resumo:
In this study we investigated whether expanded goat chondrocytes have the capacity to generate cartilaginous tissues with biochemical and biomechanical properties improving with time in culture. Goat chondrocytes were expanded in monolayer with or without combinations of FGF-2, TGF-beta1, and PDGFbb, and the postexpansion chondrogenic capacity assessed in pellet cultures. Expanded chondrocytes were also cultured for up to 6 weeks in HYAFF-M nonwoven meshes or Polyactive foams, and the resulting cartilaginous tissues were assessed histologically, biochemically, and biomechanically. Supplementation of the expansion medium with FGF-2 increased the proliferation rate of goat chondrocytes and enhanced their postexpansion chondrogenic capacity. FGF-2-expanded chondrocytes seeded in HYAFF-M or Polyactive scaffolds formed cartilaginous tissues with wet weight, glycosaminoglycan, and collagen content, increasing from 2 days to 6 weeks culture (up to respectively 2-, 8-, and 41-fold). Equilibrium and dynamic stiffness measured in HYAFF M-based constructs also increased with time, up to, respectively, 1.3- and 16-fold. This study demonstrates the feasibility to engineer goat cartilaginous tissues at different stages of development by varying culture time, and thus opens the possibility to test the effect of maturation stage of engineered cartilage on the outcome of cartilage repair in orthotopic goat models.
Resumo:
BACKGROUND: The aim of this study was to evaluate the efficacy of a combination graft, using recombinant human bone morphogenetic protein-2 (rhBMP-2) and culture-expanded cells derived from bone marrow, for bone regeneration in a nonhuman primate mandible. METHODS: Five Japanese monkeys were used. Three milliliters of bone marrow was obtained from the tibia and plated into culture flasks. Adherent cells were cultured until near confluence; then, the proliferated cells were transferred to a three-dimensional culture system using collagen beads as the cell carrier. The medium was supplemented with ascorbic acid, beta-glycerophosphate, and dexamethasone to promote osteoblastic differentiation. After further proliferation on beads, the cells were mixed with a collagen sponge that was impregnated with rhBMP-2 and grafted into surgically created segmental bone defects of the mandibles. Three animals received this treatment, and either culture-expanded cells alone or collagen beads without cells were implanted into the remaining two monkeys as controls. The animals were killed 24 weeks after surgery, and the results were assessed by radiographic and histologic evaluation. RESULTS: The combination graft of culture-expanded bone marrow cells with rhBMP-2 in a collagen sponge regenerated the mandibular bone completely. By contrast, the graft of culture-expanded cells alone resulted in only a small amount of bone formation, and the implantation of collagen beads alone led to no bone formation. CONCLUSION: The combination graft of rhBMP-2 and culture-expanded cells, which requires only a small amount of bone marrow, is a reliable method for the reconstruction of segmental bone defects of the mandible.
Resumo:
PURPOSE: To retrospectively evaluate the midterm patency rate of the nitinol (Viatorr, W.L. Gore and Associates, Flagstaff, Ariz) stent-graft for direct intrahepatic portacaval shunt (DIPS) creation. MATERIALS AND METHODS: Institutional Review Board approval for this retrospective HIPAA-compliant study was obtained with waiver of informed consent. DIPS was created in 18 men and one woman (median age, 54 years; range, 45-65 years) by using nitinol polytetrafluoroethylene (PTFE)-covered stent-grafts. The primary indications were intractable ascites (n = 14), acute variceal bleeding (n = 3), and hydrothorax (n = 2). Follow-up included Doppler ultrasonography at 1, 6, and 12 months and venography with manometry at 6-month intervals after the procedure. Shunt patency and cumulative survival were evaluated by using the Kaplan-Meier method and survival curves were plotted. Differences in mean portosystemic gradients (PSGs) were evaluated by using the Student t test. Multiple regression analysis for survival and DIPS patency were performed for the following parameters: Child-Pugh class, model of end-stage liver disease score, pre- and post-DIPS PSGs, pre-DIPS liver function tests, and pre-DIPS creatinine levels. RESULTS: DIPS creation was successful in all patients. Effective portal decompression and free antegrade shunt flow was achieved in all patients. Intraperitoneal bleeding occurred in one patient during the procedure and was controlled during the same procedure by placing a second nitinol stent-graft. The primary patency rate was 100% at all times during the follow-up period (range, 2 days to 30 months; mean, 256 days; median, 160 days). Flow restrictors were deployed in two (11%) of 19 patients. The 1-year mortality rate was 37% (seven of 19). CONCLUSION: Patency after DIPS creation with the nitinol PTFE-covered stent-graft was superior to that after TIPS with the nitinol stent-graft.
Resumo:
AIMS: To describe the procedural performance and 30-day outcomes following implantation using the 18 Fr CoreValve Revalving System (CRS) as part of the multicentre, expanded evaluation registry, 1-year after obtaining CE mark approval. METHODS AND RESULTS: Patients with symptomatic severe aortic stenosis and logistic Euroscore > or =15%, or age > or =75 years, or age > or =65 years associated with pre-defined risk factors, and for whom a physician proctor and a clinical specialist were in attendance during the implantation and who collected the clinical data, were included. From April 2007, to April 2008, 646 patients with a mean age of 81 +/- 6.6 years, mean aortic valve area 0.6 +/- 0.2 cm2, and logistic EuroSCORE of 23.1 +/- 13.8% were recruited. After valve implantation, the mean transaortic valve gradient decreased from 49.4 +/- 13.9 to 3 +/- 2 mmHg. All patients had paravalvular aortic regurgitation < or = grade 2. The rate of procedural success was 97%. The procedural mortality rate was 1.5%. At 30 days, the all-cause mortality rate (i.e, including procedural) was 8% and the combined rate of death, stroke and myocardial infarction was 9.3%. CONCLUSIONS: The results of this study demonstrate the high rate of procedural success and a low 30-day mortality in a large cohort of high-risk patients undergoing transcatheter aortic valve implantation (TAVI) with the CRS.
Resumo:
Ventral mesencephalic (VM) precursor cells are of interest in the search for transplantable dopaminergic neurons for cell therapy in Parkinson's disease (PD). In the present study we investigated the survival and functional capacity of in vitro expanded, primary VM precursor cells after intrastriatal grafting to a rat model of PD. Embryonic day 12 rat VM tissue was mechanically dissociated and cultured for 4 or 8 days in vitro (DIV) in the presence of FGF2 (20 ng/ml), FGF8 (20 ng/ml) or without mitogens (control). Cells were thereafter differentiated for 6 DIV by mitogen withdrawal and addition of serum. After differentiation, significantly more tyrosine hydroxylase-immunoreactive (TH-ir), dopamine-producing neurons were found in FGF2- and FGF8-expanded cultures compared to controls. Moreover, expansion for 4 DIV resulted in significantly more TH-ir cells than expansion for 8 DIV both for FGF2 (2.4 fold; P<0.001) and FGF8 (3.8 fold; P<0.001) treated cultures. The functional potential of the expanded cells (4 DIV) was examined after grafting into striatum of aged 6-hydroxydopamine-lesioned rats. Amphetamine-induced rotations performed 3, 6 and 9 weeks postgrafting revealed that grafts of FGF2-expanded cells induced a significantly faster and better functional recovery than grafts of FGF8-expanded cells or control cells (P<0.05 for both). Grafts of FGF2-expanded cells also contained significantly more TH-ir cells than grafts of FGF8-expanded cells (P<0.05) or control cells (P<0.01). In conclusion, FGF2-mediated pregrafting expansion of primary VM precursor cells considerably improves dopaminergic cell survival and functional restoration in a rat model of PD.
Resumo:
A review of Food Politics: How the Food Industry Influences Nutrition, and Health, Revised and Expanded Edition.
Resumo:
The enzymatic co-polymerization of modified nucleoside triphosphates (dN*TPs and N*TPs) is a versatile method for the expansion and exploration of expanded chemical space in SELEX and related combinatorial methods of in vitro selection. This strategy can be exploited to generate aptamers with improved or hitherto unknown properties. In this review, we discuss the nature of the functionalities appended to nucleoside triphosphates and their impact on selection experiments. The properties of the resulting modified aptamers will be described, particularly those integrated in the fields of biomolecular diagnostics, therapeutics, and in the expansion of genetic systems (XNAs).
Resumo:
PURPOSE: To evaluate and characterize multiple evanescent white dot syndrome abnormalities with modern multimodal imaging modalities. METHODS: This retrospective cohort study evaluated fundus photography, fluorescein angiography, indocyanine green angiography, optical coherence tomography, enhanced depth imaging optical coherence tomography, short-wavelength autofluorescence, and near-infrared autofluorescence. RESULTS: Thirty-four multiple evanescent white dot syndrome patients with mean age of 28.7 years were studied (range, 14-49 years). Twenty-six patients were women, and eight were men. Initial mean visual acuity was 0.41 logMAR. Final mean visual acuity was 0.03 logMAR. Fluorescein angiography shows a variable number of mid retinal early fluorescent dots distributed in a wreathlike pattern, which correlate to fundus photography, fundus autofluorescence, and indocyanine green angiography. Indocyanine green angiography imaging shows the dots and also hypofluorescent, deeper, and larger spots, which are occasionally confluent, demonstrating a large plaque of deep retinal hypofluorescence. Optical coherence tomography imaging shows multifocal debris centered at and around the ellipsoid layer, corresponding to the location of spots seen with photography, indocyanine green angiography, and fluorescein angiography. Protrusions of the hyperreflectant material from the ellipsoid layer toward the outer nuclear layer correspond to the location of dots seen with photography, indocyanine green angiography, and fluorescein angiography. CONCLUSION: Multimodal imaging analysis of the retina in patients with multiple evanescent white dot syndrome shows additional features that may help in the diagnosis of the disease and in further understanding its etiology. Multiple evanescent white dot syndrome is predominantly a disease of the outer retina, centered at the ellipsoid zone, but also involving the interdigitation zone and the outer nuclear layer.
Resumo:
Cartilage is a tissue with limited self-healing potential. Hence, cartilage defects require surgical attention to prevent or postpone the development of osteoarthritis. For cell-based cartilage repair strategies, in particular autologous chondrocyte implantation, articular chondrocytes are isolated from cartilage and expanded in vitro to increase the number of cells required for therapy. During expansion, the cells lose the competence to autonomously form a cartilage-like tissue, that is in the absence of exogenously added chondrogenic growth factors, such as TGF-βs. We hypothesized that signaling elicited by autocrine and/or paracrine TGF-β is essential for the formation of cartilage-like tissue and that alterations within the TGF-β signaling pathway during expansion interfere with this process. Primary bovine articular chondrocytes were harvested and expanded in monolayer culture up to passage six and the formation of cartilage tissue was investigated in high density pellet cultures grown for three weeks. Chondrocytes expanded for up to three passages maintained the potential for autonomous cartilage-like tissue formation. After three passages, however, exogenous TGF-β1 was required to induce the formation of cartilage-like tissue. When TGF-β signaling was blocked by inhibiting the TGF-β receptor 1 kinase, the autonomous formation of cartilage-like tissue was abrogated. At the initiation of pellet culture, chondrocytes from passage three and later showed levels of transcripts coding for TGF-β receptors 1 and 2 and TGF-β2 to be three-, five- and five-fold decreased, respectively, as compared to primary chondrocytes. In conclusion, the autonomous formation of cartilage-like tissue by expanded chondrocytes is dependent on signaling induced by autocrine and/or paracrine TGF-β. We propose that a decrease in the expression of the chondrogenic growth factor TGF-β2 and of the TGF-β receptors in expanded chondrocytes accounts for a decrease in the activity of the TGF-β signaling pathway and hence for the loss of the potential for autonomous cartilage-like tissue formation.