953 resultados para Event-driven Framework
Resumo:
The interconnected domains are attracting interest from industries and academia, although this phenomenon, called ‘convergence’ is not new. Organizational research has indeed focused on uncovering co-creation for manufacturing and the industrial organization, with limited implications to entrepreneurship. Although convergence has been characterized as a process connecting seemingly disparate disciplines, it is argued that these studies tend to leave the creative industries unnoticed. With the art market boom and new forms of collaboration riding past the institution-focused arts marketing literature, this thesis takes a leap to uncover the processes of entrepreneurship in the emergence of a cultural product. As a symbolic work of synergism itself, the thesis combines organizational theory with literature in natural sciences and arts. Assuming nonlinearity, a framework is created for analysing aesthetic experience in an empirical event where network actors are connected to multiple contexts. As the focal case in study, the empirical analysis performed for a music festival organized in a skiing resort in the French Alps in March. The researcher attends the festival and models its cocreation process by enquiring from an artist, festival organisers, and a festival visitor. The findings contribute to fields of entrepreneurship, aesthetics and marketing mainly. It is found that the network actors engage in intimate and creative interaction where activity patterns are interrupted and cultural elements combined. This process is considered to both create and destruct value, through identity building, legitimisation, learning, and access to larger audiences, and it is considered particularly useful for domains where resources are too restrained for conventional marketing practices. This thesis uncovered the role of artists and informants and posits that particularly through experience design, this type of skilled individual be regarded more often as a research informant. Future research is encouraged to engage in convergence by experimenting with different fields and research designs, and it is suggested that future studies could arrive at different descriptive results.
Resumo:
In recent years, life event approach has been widely used by governments all over the world for designing and providing web services to citizens through their e-government portals. Despite the wide usage of this approach, there is still a challenge of how to use this approach to design e-government portals in order to automatically provide personalised services to citizens. We propose a conceptual framework for e-government service provision based on life event approach and the use of citizen profile to capture the citizen needs, since the process of finding Web services from a government-to-citizen (G2C) system involves understanding the citizens’ needs and demands, selecting the relevant services, and delivering services that matches the requirements. The proposed framework that incorporates the citizen profile is based on three components that complement each other, namely, anticipatory life events, non-anticipatory life events and recurring services.
Resumo:
The extent to which a given extreme weather or climate event is attributable to anthropogenic climate change is a question of considerable public interest. From a scientific perspective, the question can be framed in various ways, and the answer depends very much on the framing. One such framing is a risk-based approach, which answers the question probabilistically, in terms of a change in likelihood of a class of event similar to the one in question, and natural variability is treated as noise. A rather different framing is a storyline approach, which examines the role of the various factors contributing to the event as it unfolded, including the anomalous aspects of natural variability, and answers the question deterministically. It is argued that these two apparently irreconcilable approaches can be viewed within a common framework, where the most useful level of conditioning will depend on the question being asked and the uncertainties involved.
Resumo:
We present a generic spatially explicit modeling framework to estimate carbon emissions from deforestation (INPE-EM). The framework incorporates the temporal dynamics related to the deforestation process and accounts for the biophysical and socioeconomic heterogeneity of the region under study. We build an emission model for the Brazilian Amazon combining annual maps of new clearings, four maps of biomass, and a set of alternative parameters based on the recent literature. The most important results are as follows: (a) Using different biomass maps leads to large differences in estimates of emission; for the entire region of the Brazilian Amazon in the last decade, emission estimates of primary forest deforestation range from 0.21 to 0.26 similar to Pg similar to C similar to yr-1. (b) Secondary vegetation growth presents a small impact on emission balance because of the short duration of secondary vegetation. In average, the balance is only 5% smaller than the primary forest deforestation emissions. (c) Deforestation rates decreased significantly in the Brazilian Amazon in recent years, from 27 similar to Mkm2 in 2004 to 7 similar to Mkm2 in 2010. INPE-EM process-based estimates reflect this decrease even though the agricultural frontier is moving to areas of higher biomass. The decrease is slower than a non-process instantaneous model would estimate as it considers residual emissions (slash, wood products, and secondary vegetation). The average balance, considering all biomass, decreases from 0.28 in 2004 to 0.15 similar to Pg similar to C similar to yr-1 in 2009; the non-process model estimates a decrease from 0.33 to 0.10 similar to Pg similar to C similar to yr-1. We conclude that the INPE-EM is a powerful tool for representing deforestation-driven carbon emissions. Biomass estimates are still the largest source of uncertainty in the effective use of this type of model for informing mechanisms such as REDD+. The results also indicate that efforts to reduce emissions should focus not only on controlling primary forest deforestation but also on creating incentives for the restoration of secondary forests.
Resumo:
Simulation is an important resource for researchers in diverse fields. However, many researchers have found flaws in the methodology of published simulation studies and have described the state of the simulation community as being in a crisis of credibility. This work describes the project of the Simulation Automation Framework for Experiments (SAFE), which addresses the issues that undermine credibility by automating the workflow in the execution of simulation studies. Automation reduces the number of opportunities for users to introduce error in the scientific process thereby improvingthe credibility of the final results. Automation also eases the job of simulation users and allows them to focus on the design of models and the analysis of results rather than on the complexities of the workflow.
Resumo:
Due to their outstanding resolution and well-constrained chronologies, Greenland ice-core records provide a master record of past climatic changes throughout the Last Interglacial–Glacial cycle in the North Atlantic region. As part of the INTIMATE (INTegration of Ice-core, MArine and TErrestrial records) project, protocols have been proposed to ensure consistent and robust correlation between different records of past climate. A key element of these protocols has been the formal definition and ordinal numbering of the sequence of Greenland Stadials (GS) and Greenland Interstadials (GI) within the most recent glacial period. The GS and GI periods are the Greenland expressions of the characteristic Dansgaard–Oeschger events that represent cold and warm phases of the North Atlantic region, respectively. We present here a more detailed and extended GS/GI template for the whole of the Last Glacial period. It is based on a synchronization of the NGRIP, GRIP, and GISP2 ice-core records that allows the parallel analysis of all three records on a common time scale. The boundaries of the GS and GI periods are defined based on a combination of stable-oxygen isotope ratios of the ice (δ18O, reflecting mainly local temperature) and calcium ion concentrations (reflecting mainly atmospheric dust loading) measured in the ice. The data not only resolve the well-known sequence of Dansgaard–Oeschger events that were first defined and numbered in the ice-core records more than two decades ago, but also better resolve a number of short-lived climatic oscillations, some defined here for the first time. Using this revised scheme, we propose a consistent approach for discriminating and naming all the significant abrupt climatic events of the Last Glacial period that are represented in the Greenland ice records. The final product constitutes an extended and better resolved Greenland stratotype sequence, against which other proxy records can be compared and correlated. It also provides a more secure basis for investigating the dynamics and fundamental causes of these climatic perturbations.
Resumo:
Nowadays, there are sound methods and tools which implement the Model-Driven Development approach (MDD) satisfactorily. However, MDD approaches focus on representing and generating code that represents functionality, behaviour and persistence, putting the interaction, and more specifically the usability, in a second place. If we aim to include usability features in a system developed with a MDD tool, we need to extend manually the generated code
Resumo:
Over the past years, the paradigm of component-based software engineering has been established in the construction of complex mission-critical systems. Due to this trend, there is a practical need for techniques that evaluate critical properties (such as safety, reliability, availability or performance) of these systems. In this paper, we review several high-level techniques for the evaluation of safety properties for component-based systems and we propose a new evaluation model (State Event Fault Trees) that extends safety analysis towards a lower abstraction level. This model possesses a state-event semantics and strong encapsulation, which is especially useful for the evaluation of component-based software systems. Finally, we compare the techniques and give suggestions for their combined usage
Resumo:
Acknowledgements: We thank Iain Malcolm of Marine Scotland Science for access to data from the Girnock and the Scottish Environment Protection Agency for historical stage-discharge relationships. CS contributions on this paper were in part supported by the NERC/JPI SIWA project (NE/M019896/1).