937 resultados para Eukaryotic Initiation Factor-3
Resumo:
Building and maintaining muscle is critical to the quality of life for adults and elderly. Physical activity and nutrition are important factors for long-term muscle health. In particular, dietary protein – including protein distribution and quality – are under-appreciated determinants of muscle health for adults. The most unequivocal evidence for the benefit of optimal dietary protein at individual meals is derived from studies of weight management. During the catabolic condition of weight loss, higher protein diets attenuate loss of lean tissue and partition weight loss to body fat when compared with commonly recommended high carbohydrate, low protein diets. Muscle protein turnover is a continuous process in which proteins are degraded, and replaced by newly synthesized proteins. Muscle growth occurs when protein synthesis exceeds protein degradation. Regulation of protein synthesis is complex, with multiple signals influencing this process. The mammalian target of rapamycin (mTORC1) pathway has been identified as a particularly important regulator of protein synthesis, via stimulation of translation initiation. Key regulatory points of translation initiation effected by mTORC1 include assembly of the eukaryotic initiation factor 4F (eIF4F) complex and phosphorylation of the 70 kilodalton ribosomal protein S6 kinase (S6K1). Assembly of the eIF4F initiation complex involves phosphorylation of the inhibitory eIF4E binding protein-1 (4E-BP1), which releases the initiation factor eIF4E and allows it to bind with eIF4G. Binding of eIF4E with eIF4G promotes preparation of the mRNA for binding to the 43S pre-initiation complex. Consumption of the amino acid leucine (Leu) is a key factor determining the anabolic response of muscle protein synthesis (MPS) and mTORC1 signaling to a meal. Research from this dissertation demonstrates that the peak activation of MPS following a complete meal is proportional to the Leu content of a meal and its ability to elevate plasma Leu. Leu has also been implicated as an inhibitor of muscle protein degradation (MPD). In particular, there is evidence suggesting that in muscle wasting conditions Leu supplementation attenuates expression of the ubiquitin-proteosome pathway, which is the primary mode of intracellular protein degradation. However, this is untested in healthy, physiological feeding models. Therefore, an experiment was performed to see if feeding isonitrogenous protein sources with different Leu contents to healthy adult rats would differentially impact ubiquitin-proteosome (protein degradation) outcomes; and if these outcomes are related to the meal responses of plasma Leu. Results showed that higher Leu diets were able to attenuate total proteasome content but had no effect on ubiquitin proteins. This research shows that dietary Leu determines postprandial muscle anabolism. In a parallel line of research, the effects of dietary Leu on changes in muscle mass overtime were investigated. Animals consuming higher Leu diets had larger gastrocnemius muscle weights; furthermore, gastrocnemius muscle weights were correlated with postprandial changes in MPS (r=0.471, P<0.01) and plasma Leu (r=0.400, P=0.01). These results show that the effect of Leu on ubiquitin-proteosome pathways is minimal for healthy adult rats consuming adequate diets. Thus, long-term changes in muscle mass observed in adult rats are likely due to the differences in MPS, rather than MPD. Factors determining the duration of Leu-stimulated MPS were further investigated. Despite continued elevations in plasma Leu and associated translation initiation factors (e.g., S6K1 and 4E-BP1), MPS returned to basal levels ~3 hours after a meal. However, administration of additional nutrients in the form of carbohydrate, Leu, or both ~2 hours after a meal was able to extend the elevation of MPS, in a time and dose dependent manner. This effect led to a novel discovery that decreases in translation elongation activity was associated with increases in activity of AMP kinase, a key cellular energy sensor. This research shows that the Leu density of dietary protein determines anabolic signaling, thereby affecting cellular energetics and body composition.
Resumo:
Deoxyhypusine synthase, an NAD(+)-dependent enzyme, catalyzes the first step in the post-translational synthesis of an unusual amino acid, hypusine (N-epsilon-(4-amino-2-hydroxybutyl)lysine), in the eukaryotic initiation factor 5A precursor protein. Two putative deoxyhypusine synthase (DHS) sequences have been identified in the Leishmania donovani genome, which are present on chromosomes 20: DHSL20 (DHS-like gene from chromosome 20) and DHS34 (DHS from chromosome 34). Although both sequences exhibit an overall conservation of key residues, DHSL20 protein lacks a critical lysine residue, and the recombinant protein showed no DHS activity in vitro. However, DHS34 contains the critical lysine residue, and the recombinant DHS34 effectively catalyzed deoxyhypusine synthesis. Furthermore, in vivo labeling confirmed that hypusination of eukaryotic initiation factor 5A occurs in intact Leishmania parasites. Interestingly, the DHS34 is much longer, with 601 amino acids, compared with the human DHS enzyme (369 amino acids) and contains several unique insertions. To study the physiological role of DHS34 in Leishmania, gene deletion mutations were attempted via targeted gene replacement. However, chromosomal null mutants of DHS34 could only be obtained in the presence of a DHS34-containing episome. The present data provide evidence that DHS34 is essential for L. donovani and that structural differences in the human and leishmanial DHS enzyme may be exploited for designing selective inhibitors against the parasite.
Resumo:
A cell-free protein-synthesizing system has been reconstituted using the S-30 fraction or ribosomes and the S-100 fraction from Plasmodium falciparum. Addition of heme in vitro stimulates cell-free protein synthesis strikingly. Chloroquine inhibits the heme-dependent protein synthesis in the parasite lysate. The drug has also been found to inhibit parasite protein synthesis in situ at therapeutic concentrations soon after addition to parasite cultures. Ribosomes as well as the S-100 fraction isolated from such chloroquine-treated cultures are defective in protein synthesis. Addition of hemin plus glucose 6-phosphate or high concentrations of GTP, cAMP, and an active preparation of eIF-2 to the parasite cell-free system restores protein synthesis to a significant extent in chloroquine-treated cultures. Under conditions of inhibition of protein synthesis in situ by chloroquine in the culture, the parasite eukaryotic initiation factor 2-alpha- (eIF-2-alpha) is phosphorylated in the parasite lysate to a greater extent than that observed in the control culture. Addition of hemin in vitro suppresses this phosphorylation. eIF-2-alpha kinase activity is present in the parasite lysate and is not a contaminant derived from the human erythrocytes used to culture the parasite. The heme-chloroquine interactive effects can also be demonstrated with purified eIF-2-alpha kinase from rabbit reticulocyte lysate. It is proposed that chloroquine inhibits heme-dependent protein synthesis in the parasite and this is an early event mediating the growth-inhibitory effects of the drug.
Resumo:
The double-stranded RNA (dsRNA)-dependent protein kinase PKR is thought to mediate a conserved antiviral pathway by inhibiting viral protein synthesis via the phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2 alpha). However, little is known about the data related to the lower vertebrates, including fish. Recently, the identification of PKR-like, or PKZ, has addressed the question of whether there is an orthologous PKR in fish. Here, we identify the first fish PKR gene from the Japanese flounder Paralichthys olivaceus (PoPKR). PoPKR encodes a protein that shows a conserved structure that is characteristic of mammalian PKRs, having both the N-terminal region for dsRNA binding and the C-terminal region for the inhibition of protein translation. The catalytic activity of PoPKR is further evidence that it is required for protein translation inhibition in vitro. PoPKR is constitutively transcribed at low levels and is highly induced after virus infection. Strikingly, PoPKR overexpression increases eIF2 alpha phosphorylation and inhibits the replication of Scophthalmus maximus rhabdovirus (SMRV) in flounder embryonic cells, whereas phosphorylation and antiviral effects are impaired in transfected cells expressing the catalytically inactive PKR-K421R variant, indicating that PoPKR inhibits virus replication by phosphorylating substrate eIF2 alpha. The interaction between PoPKR and eIF2 alpha is demonstrated by coimmunoprecipitation assays, and the transfection of PoPKR-specific short interfering RNA further reveals that the enhanced eIF2 alpha phosphorylation is catalyzed by PoPKR during SMRV infection. The current data provide significant evidence for the existence of a PKR-mediated antiviral pathway in fish and reveal considerable conservation in the functional domains and the antiviral effect of PKR proteins between fish and mammals.
Resumo:
Cells respond to different types of stress by inhibition of protein synthesis and subsequent assembly of stress granules (SGs), cytoplasmic aggregates that contain stalled translation preinitiation complexes. Global translation is regulated through the translation initiation factor eukaryotic initiation factor 2a (eIF2a) and the mTOR pathway. Here we identify cold shock as a novel trigger of SG assembly in yeast and mammals. Whereas cold shock-induced SGs take hours to form, they dissolve within minutes when cells are returned to optimal growth temperatures. Cold shock causes eIF2a phosphorylation through the kinase PERK in mammalian cells, yet this pathway is not alone responsible for translation arrest and SG formation. In addition, cold shock leads to reduced mitochondrial function, energy depletion, concomitant activation of AMP-activated protein kinase (AMPK), and inhibition of mTOR signaling. Compound C, a pharmacological inhibitor of AMPK, prevents the formation of SGs and strongly reduces cellular survival in a translation-dependent manner. Our results demonstrate that cells actively suppress protein synthesis by parallel pathways, which induce SG formation and ensure cellular survival during hypothermia.
Resumo:
The ability of Mycobacterium tuberculosis to establish a latent infection (LTBI) in humans confounds the treatment of tuberculosis. Consequently, there is a need to discover new therapeutic agents that can kill M. tuberculosis both during active disease and LTBI. The streptomycin-dependent strain of M. tuberculosis, 18b, provides a useful tool for this purpose since upon removal of streptomycin (STR) it enters a non-replicating state that mimics latency both in vitro and in animal models. The 4.41 Mb genome sequence of M. tuberculosis 18b was determined and this revealed the strain to belong to clade 3 of the ancient ancestral lineage of the Beijing family. STR-dependence was attributable to insertion of a single cytosine in the 530 loop of the 16S rRNA and to a single amino acid insertion in the N-terminal domain of initiation factor 3. RNA-seq was used to understand the genetic programme activated upon STR-withdrawal and hence to gain insight into LTBI. This revealed reconfiguration of gene expression and metabolic pathways showing strong similarities between non-replicating 18b and M. tuberculosis residing within macrophages, and with the core stationary phase and microaerophilic responses. The findings of this investigation confirm the validity of 18b as a model for LTBI, and provide insight into both the evolution of tubercle bacilli and the functioning of the ribosome.
Resumo:
Control of protein synthesis is a key step in the regulation of gene expression during apoptosis and the heat shock response. Under such conditions, cap-dependent translation is impaired and Internal Ribosome Entry Site (IRES)-dependent translation plays a major role in mammalian cells. Although the role of IRES-dependent translation during apoptosis has been mainly studied in mammals, its role in the translation of Drosophila apoptotic genes has not been yet studied. The observation that the Drosophila mutant embryos for the cap-binding protein, the eukaryotic initiation factor eIF4E, exhibits increased apoptosis in correlation with up-regulated proapoptotic gene reaper (rpr) transcription constitutes the first evidence for the existence of a cap-independent mechanism for the translation of Drosophila proapoptotic genes. The mechanism of translation of rpr and other proapoptotic genes was investigated in this work. We found that the 5 UTR of rpr mRNA drives translation in an IRES-dependent manner. It promotes the translation of reporter RNAs in vitro either in the absence of cap, in the presence of cap competitors, or in extracts derived from heat shocked and eIF4E mutant embryos and in vivo in cells transfected with reporters bearing a non functional cap structure, indicating that cap recognition is not required in rpr mRNA for translation. We also show that rpr mRNA 5 UTR exhibits a high degree of similarity with that of Drosophila heat shock protein 70 mRNA (hsp70), an antagonist of apoptosis, and that both are able to conduct IRES-mediated translation. The proapoptotic genes head involution defective (hid) and grim, but not sickle, also display IRES activity. Studies of mRNA association to polysomes in embryos indicate that both rpr, hsp70, hid and grim endogenous mRNAs are recruited to polysomes in embryos in which apoptosis or thermal stress was induced. We conclude that hsp70 and, on the other hand, rpr, hid and grim which are antagonizing factors during apoptosis, use a similar mechanism for protein synthesis. The outcome for the cell would thus depend on which protein is translated under a given stress condition. Factors involved in the differential translation driven by these IRES could play an important role. For this purpose, we undertook the identification of the ribonucleoprotein (RNP) complexes assembled onto the 5 UTR of rpr mRNA. We established a tobramycin-affinity-selection protocol that allows the purification of specific RNP that can be further analyzed by mass spectrometry. Several RNA binding proteins were identified as part of the rpr 5 UTR RNP complex, some of which have been related to IRES activity. The involvement of one of them, the La antigen, in the translation of rpr mRNA, was established by RNA-crosslinking experiments using recombinant protein and rpr 5 UTR and by the analysis of the translation efficiency of reporter mRNAs in Drosophila cells after knock down of the endogenous La by RNAi experiments. Several uncharacterized proteins were also identified, suggesting that they might play a role during translation, during the assembly of the translational machinery or in the priming of the mRNA before ribosome recognition. Our data provide evidence for the involvement of La antigen in the translation of rpr mRNA and set a protocol for purification of tagged-RNA-protein complexes from cytoplasmic extracts. To further understand the mechanisms of translation initiation in Drosophila, we analyzed the role of eIF4B on cap-dependent and cap-independent translation. We showed that eIF4B is mostly involved in cap-, but not IRES-dependent translation as it happens in mammals.
Resumo:
The protein eukaryotic initiation factor 5A (eIF5A) is highly conserved among archaea and eukaryotes, but not in bacteria. Bacteria have the elongation factor P (EF-P), which is structurally and functionally related to eIF5A. eIF5A is essential for cell viability and the only protein known to contain the amino acid residue hypusine, formed by post-translational modification of a specific lysine residue. Although eIF5A was initially identified as a translation initiation factor, recent studies strongly support a function for eIF5A in the elongation step of translation. However, the mode of action of eIF5A is still unknown. Here, we analyzed the oligomeric state of yeast eIF5A. First, by using size-exclusion chromatography, we showed that this protein exists as a dimer in vitro, independent of the hypusine residue or electrostatic interactions. Protein-protein interaction assays demonstrated that eIF5A can form oligomers in vitro and in vivo, in an RNA-dependent manner, but independent of the hypusine residue or the ribosome. Finally, small-angle X-ray scattering (SAXS) experiments confirmed that eIF5A behaves as a stable dimer in solution. Moreover, the molecular envelope determined from the SAXS data shows that the eIF5A dimer is L-shaped and superimposable on the tRNAPhe tertiary structure, analogously to the EF-P monomer. © 2012 Springer-Verlag.
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this issue of Molecular Cell, Fukao et al. (2009) report that HuD upregulates mRNA translation through direct interaction with eIF4A in the 5' cap-binding complex, revealing a posttranscriptional role for HuD in neuronal development and plasticity.
Resumo:
MicroRNAs (miRNAs) silence the expression of their mRNA targets mainly by promoting mRNA decay. The mechanism, kinetics and participating enzymes for miRNA-mediated decay in mammalian cells remain largely unclear. Combining the approaches of transcriptional pulsing, RNA tethering, overexpression of dominant-negative mutants, and siRNA-mediated gene knockdown, we show that let-7 miRNA-induced silencing complexes (miRISCs), which contain the proteins Argonaute (Ago) and TNRC6 (also known as GW182), trigger very rapid mRNA decay by inducing accelerated biphasic deadenylation mediated by Pan2-Pan3 and Ccr4-Caf1 deadenylase complexes followed by Dcp1-Dcp2 complex-directed decapping in mammalian cells. When tethered to mRNAs, all four human Ago proteins and TNRC6C are each able to recapitulate the two deadenylation steps. Two conserved human Ago2 phenylalanines (Phe470 and Phe505) are critical for recruiting TNRC6 to promote deadenylation. These findings indicate that promotion of biphasic deadenylation to trigger mRNA decay is an intrinsic property of miRISCs.
Resumo:
Eukaryotic mRNAs with premature translation-termination codons (PTCs) are recognized and degraded by a process referred to as nonsense-mediated mRNA decay (NMD). The evolutionary conservation of the core NMD factors UPF1, UPF2 and UPF3 would imply a similar basic mechanism of PTC recognition in all eukaryotes. However, unlike NMD in yeast, which targets PTC-containing mRNAs irrespectively of whether their 5' cap is bound by the cap-binding complex (CBC) or by the eukaryotic initiation factor 4E (eIF4E), mammalian NMD has been claimed to be restricted to CBC-bound mRNAs during the pioneer round of translation. In our recent study we compared decay kinetics of two NMD reporter systems in mRNA fractions bound to either CBC or eIF4E in human cells. Our findings reveal that NMD destabilizes eIF4E bound transcripts as efficiently as those associated with CBC. These results corroborate an emerging unified model for NMD substrate recognition, according to which NMD can ensue at every aberrant translation termination event. Additionally, our results indicate that the closed loop structure of mRNA forms only after the replacement of CBC with eIF4E at the 5' cap.
Resumo:
Eukaryotic mRNAs with premature translation-termination codons (PTCs) are recognized and degraded by a process referred to as nonsense-mediated mRNA decay (NMD). The evolutionary conservation of the core NMD factors UPF1, UPF2 and UPF3 would imply a similar basic mechanism of PTC recognition in all eukaryotes. However, unlike NMD in yeast, which targets PTC-containing mRNAs irrespectively of whether their 5' cap is bound by the cap-binding complex (CBC) or by the eukaryotic initiation factor 4E (eIF4E), mammalian NMD has been claimed to be restricted to CBC-bound mRNAs during the pioneer round of translation. In our recent study we compared decay kinetics of two NMD reporter systems in mRNA fractions bound to either CBC or eIF4E in human cells. Our findings reveal that NMD destabilizes eIF4E bound transcripts as efficiently as those associated with CBC. These results corroborate an emerging unified model for NMD substrate recognition, according to which NMD can ensue at every aberrant translation termination event. Additionally, our results indicate that the closed loop structure of mRNA forms only after the replacement of CBC with eIF4E at the 5' cap.
Resumo:
Eukaryotic mRNAs with premature translation-termination codons (PTCs) are recognized and degraded by a process referred to as nonsense-mediated mRNA decay (NMD). The evolutionary conservation of the core NMD factors UPF1, UPF2 and UPF3 would imply a similar basic mechanism of PTC recognition in all eukaryotes. However, unlike NMD in yeast, which targets PTC-containing mRNAs irrespectively of whether their 5' cap is bound by the cap-binding complex (CBC) or by the eukaryotic initiation factor 4E (eIF4E), mammalian NMD has been claimed to be restricted to CBC-bound mRNAs during the pioneer round of translation. In our recent study we compared decay kinetics of two NMD reporter systems in mRNA fractions bound to either CBC or eIF4E in human cells. Our findings reveal that NMD destabilizes eIF4E bound transcripts as efficiently as those associated with CBC. These results corroborate an emerging unified model for NMD substrate recognition, according to which NMD can ensue at every aberrant translation termination event. Additionally, our results indicate that the closed loop structure of mRNA forms only after the replacement of CBC with eIF4E at the 5' cap.