1000 resultados para Espais lliures - Catalunya -- Santa Eulàlia de Ronçana
Resumo:
We study the exact ground state of the two-dimensional random-field Ising model as a function of both the external applied field B and the standard deviation ¿ of the Gaussian random-field distribution. The equilibrium evolution of the magnetization consists in a sequence of discrete jumps. These are very similar to the avalanche behavior found in the out-of-equilibrium version of the same model with local relaxation dynamics. We compare the statistical distributions of magnetization jumps and find that both exhibit power-law behavior for the same value of ¿. The corresponding exponents are compared.
Resumo:
The extended Gaussian ensemble (EGE) is introduced as a generalization of the canonical ensemble. This ensemble is a further extension of the Gaussian ensemble introduced by Hetherington [J. Low Temp. Phys. 66, 145 (1987)]. The statistical mechanical formalism is derived both from the analysis of the system attached to a finite reservoir and from the maximum statistical entropy principle. The probability of each microstate depends on two parameters ß and ¿ which allow one to fix, independently, the mean energy of the system and the energy fluctuations, respectively. We establish the Legendre transform structure for the generalized thermodynamic potential and propose a stability criterion. We also compare the EGE probability distribution with the q-exponential distribution. As an example, an application to a system with few independent spins is presented.
Resumo:
We have systematically analyzed six different reticular models with quenched disorder and no thermal fluctuations exhibiting a field-driven first-order phase transition. We have studied the nonequilibrium transition, appearing when varying the amount of disorder, characterized by the change from a discontinuous hysteresis cycle (with one or more large avalanches) to a smooth one (with only tiny avalanches). We have computed critical exponents using finite size scaling techniques and shown that they are consistent with universal values depending only on the space dimensionality d.
Resumo:
We study the problem of the partition of a system of initial size V into a sequence of fragments s1,s2,s3 . . . . By assuming a scaling hypothesis for the probability p(s;V) of obtaining a fragment of a given size, we deduce that the final distribution of fragment sizes exhibits power-law behavior. This minimal model is useful to understanding the distribution of avalanche sizes in first-order phase transitions at low temperatures.
Resumo:
We consider a lattice-gas model of particles with internal orientational degrees of freedom. In addition to antiferromagnetic nearest-neighbor (NN) and next-nearest-neighbor (NNN) positional interactions we also consider NN and NNN interactions arising from the internal state of the particles. The system then shows positional and orientational ordering modes with associated phase transitions at Tp and To temperatures at which long-range positional and orientational ordering are, respectively, lost. We use mean-field techniques to obtain a general approach to the study of these systems. By considering particular forms of the orientational interaction function we study coupling effects between both phase transitions arising from the interplay between orientational and positional degrees of freedom. In mean-field approximation coupling effects appear only for the phase transition taking place at lower temperatures. The strength of the coupling depends on the value of the long-range order parameter that remains finite at that temperature.
Resumo:
We have analyzed a two-dimensional lattice-gas model of cylindrical molecules which can exhibit four possible orientations. The Hamiltonian of the model contains positional and orientational energy interaction terms. The ground state of the model has been investigated on the basis of Karl¿s theorem. Monte Carlo simulation results have confirmed the predicted ground state. The model is able to reproduce, with appropriate values of the Hamiltonian parameters, both, a smectic-nematic-like transition and a nematic-isotropic-like transition. We have also analyzed the phase diagram of the system by mean-field techniques and Monte Carlo simulations. Mean-field calculations agree well qualitatively with Monte Carlo results but overestimate transition temperatures.
Resumo:
Projecte presentat a Racons Públics - FAD 2013
Resumo:
Porposta presentada a la Mostra Internacional d'Art Urbà de Caldes de Montbui
Resumo:
Sí
Resumo:
In this paper we study the existence of a unique solution for linear stochastic differential equations driven by a Lévy process, where the initial condition and the coefficients are random and not necessarily adapted to the underlying filtration. Towards this end, we extend the method based on Girsanov transformations on Wiener space and developped by Buckdahn [7] to the canonical Lévy space, which is introduced in [25].
Resumo:
Award-winning
Resumo:
A Monte Carlo simulation study of the vacancy-assisted domain growth in asymmetric binary alloys is presented. The system is modeled using a three-state ABV Hamiltonian which includes an asymmetry term. Our simulated system is a stoichiometric two-dimensional binary alloy with a single vacancy which evolves according to the vacancy-atom exchange mechanism. We obtain that, compared to the symmetric case, the ordering process slows down dramatically. Concerning the asymptotic behavior it is algebraic and characterized by the Allen-Cahn growth exponent x51/2. The late stages of the evolution are preceded by a transient regime strongly affected by both the temperature and the degree of asymmetry of the alloy. The results are discussed and compared to those obtained for the symmetric case.
Resumo:
In this paper, we obtain sharp asymptotic formulas with error estimates for the Mellin con- volution of functions de ned on (0;1), and use these formulas to characterize the asymptotic behavior of marginal distribution densities of stock price processes in mixed stochastic models. Special examples of mixed models are jump-di usion models and stochastic volatility models with jumps. We apply our general results to the Heston model with double exponential jumps, and make a detailed analysis of the asymptotic behavior of the stock price density, the call option pricing function, and the implied volatility in this model. We also obtain similar results for the Heston model with jumps distributed according to the NIG law.