817 resultados para Error of measurement
Resumo:
Before puberty, there are only small sex differences in body shape and composition. During adolescence, sexual dimorphism in bone, lean, and fat mass increases, giving rise to the greater size and strength of the male skeleton. The question remains as to whether there are sex differences in bone strength or simply differences in anthropometric dimensions. To test this, we applied hip structural analysis (HSA) to derive strength and geometric indices of the femoral neck using bone densitometry scans (DXA) from a 6-year longitudinal study in Canadian children. Seventy boys and sixty-eight girls were assessed annually for 6 consecutive years. At the femoral neck, cross-sectional area (CSA, an index of axial strength), subperiosteal width (SPW), and section modulus (Z, an index of bending strength) were determined, and data were analyzed using a hierarchical (random effects) modeling approach. Biological age (BA) was defined as years from age at peak height velocity (PHV). When BA, stature, and total-body lean mass (TB lean) were controlled, boys had significantly higher Z than girls at all maturity levels (P < 0.05). Controlling height and TB lean for CSA demonstrated a significant independent sex by BA interaction effect (P < 0.05). That is, CSA was greater in boys before PHV but higher in girls after PHV The coefficients contributing the greatest proportion to the prediction of CSA, SPW, and Z were height and lean mass. Because the significant sex difference in Z was relatively small and close to the error of measurement, we questioned its biological significance. The sex difference in bending strength was therefore explained by anthropometric differences. In contrast to recent hypotheses, we conclude that the CSA-lean ratio does not imply altered mechanosensitivity in girls because bending dominates loading at the neck, and the Z-lean ratio remained similar between the sexes throughout adolescence. That is, despite the greater CSA in girls, the bone is strategically placed to resist bending; hence, the bones of girls and boys adapt to mechanical challenges in a similar way. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
We present unified, systematic derivations of schemes in the two known measurement-based models of quantum computation. The first model (introduced by Raussendorf and Briegel, [Phys. Rev. Lett. 86, 5188 (2001)]) uses a fixed entangled state, adaptive measurements on single qubits, and feedforward of the measurement results. The second model (proposed by Nielsen, [Phys. Lett. A 308, 96 (2003)] and further simplified by Leung, [Int. J. Quant. Inf. 2, 33 (2004)]) uses adaptive two-qubit measurements that can be applied to arbitrary pairs of qubits, and feedforward of the measurement results. The underlying principle of our derivations is a variant of teleportation introduced by Zhou, Leung, and Chuang, [Phys. Rev. A 62, 052316 (2000)]. Our derivations unify these two measurement-based models of quantum computation and provide significantly simpler schemes.
Resumo:
Background and Purpose. Arm lymphedema following breast cancer In this study, we assessed the surgery is a continuing problem. reliability and validity of circumferential measurements and water displacement for measuring upper-limb volume. Subjects. Participants included subjects who had had breast cancer surgery, including axillary dissection-19 with and 22 without a diagnosis of arm lymphedema-and 25 control subjects. Methods. Two raters measured each subject by using circumferential tape measurements at specified distances from the fingertips and in relation to anatornic landmarks and by using water displacement. Interrater reliability was calculated by analysis of variance and multilevel modeling. Volumes from circumferential measurements were compared with those from water displacement by use of means and correlation coefficients, respectively. The standard error of measurement, minimum detectable change (MDC), and limits of agreement (LOA) for volumes also were calculated. Results. Arm volumes obtained with these methods had high reliability. Compared with volumes from water displacement, volumes from circumferential measurements had high validity, although these volumes were slightly larger. Expected differences between subjects with and without clinical lymphedema following breast cancer were found. The MDC of volumes or the error associated with a single measure for data based oil anatomic landmarks was lower than that based oil distance from fingertips. The mean LOA with water displacement were lower for data based on anatomic landmarks than for data based on distance from fingertips. Discussion and Conclusion. Volumes calculated from anatomic landmarks are reliable, valid, and more accurate than those obtained from circumferential measurements based on distance from fingertips.
Resumo:
Three dimensions of subordinate-supervisor relations (affective attachment, deference to supervisor, and personal-life inclusion) that had been found by Y. Chen, Friedman, Yu, Fang, and Lu to be characteristic of a guanxi relationship between subordinates and their supervisors in China were surveyed in Taiwan, Singapore, and six non-Chinese cultural contexts. The Affective Attachment and Deference subscales demonstrated full metric invariance whereas the Personal-Life Inclusion subscale was found to have partial metric invariance across all eight samples. Structural equation modeling revealed that the affective attachment dimension had a cross-nationally invariant positive relationship to affective organizational commitment and a negative relationship to turnover intention. The deference to the supervisor dimension had invariant positive relationships with both affective and normative organizational commitment. The personal-life inclusion dimension was unrelated to all outcomes. These results indicate the relevance of aspects of guanxi to superior-subordinate relations in non-Chinese cultures. Studies of indigenous concepts can contribute to a broader understanding of organizational behavior. © The Author(s) 2014.
Resumo:
The uncertainty of measurements must be quantified and considered in order to prove conformance with specifications and make other meaningful comparisons based on measurements. While there is a consistent methodology for the evaluation and expression of uncertainty within the metrology community industry frequently uses the alternative Measurement Systems Analysis methodology. This paper sets out to clarify the differences between uncertainty evaluation and MSA and presents a novel hybrid methodology for industrial measurement which enables a correct evaluation of measurement uncertainty while utilising the practical tools of MSA. In particular the use of Gage R&R ANOVA and Attribute Gage studies within a wider uncertainty evaluation framework is described. This enables in-line measurement data to be used to establish repeatability and reproducibility, without time consuming repeatability studies being carried out, while maintaining a complete consideration of all sources of uncertainty and therefore enabling conformance to be proven with a stated level of confidence. Such a rigorous approach to product verification will become increasingly important in the era of the Light Controlled Factory with metrology acting as the driving force to achieve the right first time and highly automated manufacture of high value large scale products such as aircraft, spacecraft and renewable power generation structures.
Resumo:
Post-Soviet Ukraine is in a time of upheaval and transition. Internal relations between pro-Western and pro-Russian supporters have deteriorated in the light of recent political events of Euro Revolution, Russia's occupation of the Crimean peninsula, and the militant confrontations in the southeastern regions of the country. In the light of these developments, intercultural competence is greatly needed to alleviate domestic tensions and enable effective intercultural communication with the representatives of different cultures within the country and beyond its borders.^ This study established a baseline of psychometric estimates of intercultural competence of Ukrainian higher education faculty. A sample of 276 professors of different academic majors from one university in Western Ukraine participated in the research. The Global Perspective Inventory (GPI; Merrill, Braskamp, & Braskamp, 2012) was chosen as a research instrument to measure intercultural competence of the faculty members. The GPI takes into account cognitive, intrapersonal, and interpersonal domains, each of which contains two scales reflective of theories of cultural development and intercultural communication – Cognitive-Knowing, Cognitive-Knowledge, Intrapersonal-Identity, Intrapersonal-Affect, Interpersonal-Social Responsibility, and Interpersonal-Social Interaction. Because the research instrument has neither been previously used as a measure of intercultural competence, nor administered in Ukraine, it was cross-validated using a Table of Specification (Newman, Lim, & Pineda, 2013) and two sets of factor analyses. As a result, a modified version of the GPI was created for use in Ukraine.^ Multiple linear regression analyses were used to test relationships between the participants' GPI scores on intercultural competence, and several independent variables that consisted of academic discipline, intercultural experience, and how long the participants taught at the university. The analyses determined a positive relationship between the scores on three out of six scales of the original version and two out of five scales of the modified version of the GPI and all the independent variables simultaneously. The relationship between the faculty responses on the six scales of both GPI versions and the independent variables controlling for each other produced mixed results. A unique role of intercultural professional development in predicting intercultural competence was discussed.^
Resumo:
Multi-frequency eddy current measurements are employed in estimating pressure tube (PT) to calandria tube (CT) gap in CANDU fuel channels, a critical inspection activity required to ensure fitness for service of fuel channels. In this thesis, a comprehensive characterization of eddy current gap data is laid out, in order to extract further information on fuel channel condition, and to identify generalized applications for multi-frequency eddy current data. A surface profiling technique, generalizable to multiple probe and conductive material configurations has been developed. This technique has allowed for identification of various pressure tube artefacts, has been independently validated (using ultrasonic measurements), and has been deployed and commissioned at Ontario Power Generation. Dodd and Deeds solutions to the electromagnetic boundary value problem associated with the PT to CT gap probe configuration were experimentally validated for amplitude response to changes in gap. Using the validated Dodd and Deeds solutions, principal components analysis (PCA) has been employed to identify independence and redundancies in multi-frequency eddy current data. This has allowed for an enhanced visualization of factors affecting gap measurement. Results of the PCA of simulation data are consistent with the skin depth equation, and are validated against PCA of physical experiments. Finally, compressed data acquisition has been realized, allowing faster data acquisition for multi-frequency eddy current systems with hardware limitations, and is generalizable to other applications where real time acquisition of large data sets is prohibitive.
Resumo:
Measurement and modeling techniques were developed to improve over-water gaseous air-water exchange measurements for persistent bioaccumulative and toxic chemicals (PBTs). Analytical methods were applied to atmospheric measurements of hexachlorobenzene (HCB), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs). Additionally, the sampling and analytical methods are well suited to study semivolatile organic compounds (SOCs) in air with applications related to secondary organic aerosol formation, urban, and indoor air quality. A novel gas-phase cleanup method is described for use with thermal desorption methods for analysis of atmospheric SOCs using multicapillary denuders. The cleanup selectively removed hydrogen-bonding chemicals from samples, including much of the background matrix of oxidized organic compounds in ambient air, and thereby improved precision and method detection limits for nonpolar analytes. A model is presented that predicts gas collection efficiency and particle collection artifact for SOCs in multicapillary denuders using polydimethylsiloxane (PDMS) sorbent. An approach is presented to estimate the equilibrium PDMS-gas partition coefficient (Kpdms) from an Abraham solvation parameter model for any SOC. A high flow rate (300 L min-1) multicapillary denuder was designed for measurement of trace atmospheric SOCs. Overall method precision and detection limits were determined using field duplicates and compared to the conventional high-volume sampler method. The high-flow denuder is an alternative to high-volume or passive samplers when separation of gas and particle-associated SOCs upstream of a filter and short sample collection time are advantageous. A Lagrangian internal boundary layer transport exchange (IBLTE) Model is described. The model predicts the near-surface variation in several quantities with fetch in coastal, offshore flow: 1) modification in potential temperature and gas mixing ratio, 2) surface fluxes of sensible heat, water vapor, and trace gases using the NOAA COARE Bulk Algorithm and Gas Transfer Model, 3) vertical gradients in potential temperature and mixing ratio. The model was applied to interpret micrometeorological measurements of air-water exchange flux of HCB and several PCB congeners in Lake Superior. The IBLTE Model can be applied to any scalar, including water vapor, carbon dioxide, dimethyl sulfide, and other scalar quantities of interest with respect to hydrology, climate, and ecosystem science.
Resumo:
La scoliose idiopathique (SI) est une déformation tridimensionnelle (3D) de la colonne vertébrale et de la cage thoracique à potentiel évolutif pendant la croissance. Cette déformation 3D entraîne des asymétries de la posture. La correction de la posture est un des objectifs du traitement en physiothérapie chez les jeunes atteints d’une SI afin d’éviter la progression de la scoliose, de réduire les déformations morphologiques et leurs impacts sur la qualité de vie. Les outils cliniques actuels ne permettent pas de quantifier globalement les changements de la posture attribuables à la progression de la scoliose ou à l’efficacité des interventions thérapeutiques. L’objectif de cette thèse consiste donc au développement et à la validation d’un nouvel outil clinique permettant l’analyse quantitative de la posture auprès de personnes atteintes d’une SI. Ce projet vise plus spécifiquement à déterminer la fidélité et la validité des indices de posture (IP) de ce nouvel outil clinique et à vérifier leur capacité à détecter des changements entre les positions debout et assise. Suite à une recension de la littérature, 34 IP représentant l’alignement frontal et sagittal des différents segments corporels ont été sélectionnés. L’outil quantitatif clinique d’évaluation de la posture (outil 2D) construit dans ce projet consiste en un logiciel qui permet de calculer les différents IP (mesures angulaires et linéaires). L’interface graphique de cet outil est conviviale et permet de sélectionner interactivement des marqueurs sur les photographies digitales. Afin de vérifier la fidélité et la validité des IP de cet outil, la posture debout de 70 participants âgés entre 10 et 20 ans atteints d'une SI (angle de Cobb: 15º à 60º) a été évaluée à deux occasions par deux physiothérapeutes. Des marqueurs placés sur plusieurs repères anatomiques, ainsi que des points de référence anatomique (yeux, lobes des oreilles, etc.), ont permis de mesurer les IP 2D en utilisant des photographies. Ces mêmes marqueurs et points de référence ont également servi au calcul d’IP 3D obtenus par des reconstructions du tronc avec un système de topographie de surface. Les angles de Cobb frontaux et sagittaux et le déjettement C7-S1 ont été mesurés sur des radiographies. La théorie de la généralisabilité a été utilisée pour déterminer la fidélité et l’erreur standard de la mesure (ESM) des IP de l’outil 2D. Des coefficients de Pearson ont servi à déterminer la validité concomitante des IP du tronc de l’outil 2D avec les IP 3D et les mesures radiographiques correspondantes. Cinquante participants ont été également évalués en position assise « membres inférieurs allongés » pour l’étude comparative de la posture debout et assise. Des tests de t pour échantillons appariés ont été utilisés pour détecter les différences entre les positions debout et assise. Nos résultats indiquent un bon niveau de fidélité pour la majorité des IP de l’outil 2D. La corrélation entre les IP 2D et 3D est bonne pour les épaules, les omoplates, le déjettement C7-S1, les angles de taille, la scoliose thoracique et le bassin. Elle est faible à modérée pour la cyphose thoracique, la lordose lombaire et la scoliose thoraco-lombaire ou lombaire. La corrélation entre les IP 2D et les mesures radiographiques est bonne pour le déjettement C7-S1, la scoliose et la cyphose thoracique. L’outil est suffisamment discriminant pour détecter des différences entre la posture debout et assise pour dix des treize IP. Certaines recommandations spécifiques résultents de ce projet : la hauteur de la caméra devrait être ajustée en fonction de la taille des personnes; la formation des juges est importante pour maximiser la précision de la pose des marqueurs; et des marqueurs montés sur des tiges devraient faciliter l’évaluation des courbures vertébrales sagittales. En conclusion, l’outil développé dans le cadre de cette thèse possède de bonnes propriétés psychométriques et permet une évaluation globale de la posture. Cet outil devrait contribuer à l’amélioration de la pratique clinique en facilitant l’analyse de la posture debout et assise. Cet outil s’avère une alternative clinique pour suivre l’évolution de la scoliose thoracique et diminuer la fréquence des radiographies au cours du suivi de jeunes atteints d’une SI thoracique. Cet outil pourrait aussi être utile pour vérifier l’efficacité des interventions thérapeutiques sur la posture.
Resumo:
O objetivo deste estudo foi comparar os níveis de adiposidade subcutânea dos hemicorpos direito e esquerdo e, posteriormente, analisar o impacto dessas informações para o estudo da composição corporal. Setenta e seis indivíduos fisicamente ativos, 47 homens (21,6 ± 4,3 anos) e 29 mulheres (21,0 ± 2,6 anos), fizeram parte da amostra. As espessuras das dobras cutâneas abdominal, suprailíaca, subescapular, tricipital, bicipital, axilar média e perna medial foram mensuradas com um compasso Lange. Em valores médios absolutos, as maiores diferenças verificadas foram de 0,9mm (6,9%) e 0,8mm (6,8%), na dobra cutânea suprailíaca de homens e mulheres, respectivamente. Entretanto, nenhuma diferença estatisticamente significante foi encontrada na comparação entre os lados, em ambos os sexos, nas sete dobras cutâneas analisadas (P > 0,05). Similarmente, quando os valores medidos foram aplicados em equações preditivas para a determinação da gordura corporal relativa, de acordo com o sexo, nenhuma diferença significante foi encontrada (P > 0,05). Os resultados sugerem que fatores como o erro técnico de medida do avaliador, o tipo de compasso e a escolha da equação preditiva a ser utilizada, provavelmente tenham maior impacto para a estimativa da composição corporal pelo método de espessura de dobras cutâneas do que o lado a ser adotado como referência para a obtenção das medidas.
Resumo:
INTRODUCTION: The accurate evaluation of error of measurement (EM) is extremely important as in growth studies as in clinical research, since there are usually quantitatively small changes. In any study it is important to evaluate the EM to validate the results and, consequently, the conclusions. Because of its extreme simplicity, the Dahlberg formula is largely used worldwide, mainly in cephalometric studies. OBJECTIVES: (I) To elucidate the formula proposed by Dahlberg in 1940, evaluating it by comparison with linear regression analysis; (II) To propose a simple methodology to analyze the results, which provides statistical elements to assist researchers in obtaining a consistent evaluation of the EM. METHODS: We applied linear regression analysis, hypothesis tests on its parameters and a formula involving the standard deviation of error of measurement and the measured values. RESULTS AND CONCLUSION: we introduced an error coefficient, which is a proportion related to the scale of observed values. This provides new parameters to facilitate the evaluation of the impact of random errors in the research final results.