927 resultados para Equilibrium Adsorption
Resumo:
In this work, a silica surface chemically modified with [3-(2,2′-dipyridylamine)propyl] groups, named [3-(2,2′- dipyridylamine)propyl]silica (Si-Pr-DPA) was prepared, characterized, and evaluated for its heavy metal adsorption characteristics from aqueous solution. To our knowledge, we are the first authors who have reported the present modification. The material was characterized using infrared spectroscopy, SEM, and NMR 29Si and 13C solid state. Batch and column experiments were conducted to investigate for heavy metal removal from dilute aqueous solution by sorption onto Si-Pr-DPA. From a number of studies the affinity of various metal ions for the Si-Pr-DPA sorbent was determined to follow the order Fe(III) > Cr(III) >> Cu(II) > Cd(II) > Pb(II) > Ni(II). Two standard reference materials were used for checking the accuracy and precision of the method. The proposed method was successfully applied to the analysis of environmental samples. This ligand material has great advantage for adsorption of transition-metal ions from aqueous medium due to its high degree of organofunctionalization associated with the large adsorption capacity, reutilization possibility, and rapidity in reaching the equilibrium. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this study, carra sawdust pre-treated with formaldehyde was used to adsorb reactive red 239 (RR239). The effects of several experimental conditions, including the concentration of dye, sorbent dosage, temperature, ionic strength, stirring speed and solution pH, on the kinetics of the adsorption process have been studied, and the experimental data were fitted to pseudo-second-order model. A study of the intra-particle diffusion model indicates that the mechanism of dye adsorption using carra sawdust is rather complex and is most likely a combination of external mass transfer and intra-particle diffusion. The experimental data obtained at equilibrium were analyzed using the Langmuir and Freundlich isotherm models, and the results indicated that at this concentration range, both models can be applied for obtaining the equilibrium parameters. The maximum dye uptake obtained at 298 K was found to be 15.1 mg g(-1). In contrast to the usual systems, the reactive dye studied in the present work is strongly attached to the sawdust even after several washes with water, allowing it to be discarded as a solid waste.
Resumo:
In a previous work, succinylated sugarcane bagasse (SCB 2) was prepared from sugarcane bagasse (B) using succinic anhydride as modifying agent. In this work the adsorption of cationic dyes onto SCB 2 from aqueous solutions was investigated. Methylene blue, MB, and gentian violet, GV, were selected as adsorbates. The capacity of SCB 2 to adsorb MB and GV from aqueous single dye solutions was evaluated at different contact times, pH, and initial adsorbent concentration. According to the obtained results, the adsorption processes could be described by the pseudo-second-order kinetic model. Adsorption isotherms were well fitted by Langmuir model. Maximum adsorption capacities for MB and GV onto SCB 2 were found to be 478.5 and 1273.2 mg/g, respectively. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Brazil is considered one of the largest producers and consumers of tropical fruits. Green coconut (Cocos nucifera L.) stands out not only for its production and consumption, but also for the high amount of waste produced by coconut water industry and in natura consumption. Therefore, there is a need for utilization of this by-product. This study aims to study the adsorption isotherms of green coconut pulp and determine its isosteric heat of sorption. The adsorption isotherms at temperatures of 30, 40, 50, 60, and 70 °C were analyzed, and they exhibit type III behavior, typical of sugar rich foods. The experimental results of equilibrium moisture content were correlated by models present in the literature. The Guggenheim, Anderson and De Boer (GAB) model proved particularly good overall agreement with the experimental data. The heat of sorption determined from the adsorption isotherms increased with the decrease in moisture content. The heat of sorption is considered as indicative of intermolecular attractive forces between the sorption sites and water vapor, which is an important factor to predict the shelf life of dried products.
Resumo:
Biosensors find wide application in clinical diagnostics, bioprocess control and environmental monitoring. They should not only show high specificity and reproducibility but also a high sensitivity and stability of the signal. Therefore, I introduce a novel sensor technology based on plasmonic nanoparticles which overcomes both of these limitations. Plasmonic nanoparticles exhibit strong absorption and scattering in the visible and near-infrared spectral range. The plasmon resonance, the collective coherent oscillation mode of the conduction band electrons against the positively charged ionic lattice, is sensitive to the local environment of the particle. I monitor these changes in the resonance wavelength by a new dark-field spectroscopy technique. Due to a strong light source and a highly sensitive detector a temporal resolution in the microsecond regime is possible in combination with a high spectral stability. This opens a window to investigate dynamics on the molecular level and to gain knowledge about fundamental biological processes.rnFirst, I investigate adsorption at the non-equilibrium as well as at the equilibrium state. I show the temporal evolution of single adsorption events of fibrinogen on the surface of the sensor on a millisecond timescale. Fibrinogen is a blood plasma protein with a unique shape that plays a central role in blood coagulation and is always involved in cell-biomaterial interactions. Further, I monitor equilibrium coverage fluctuations of sodium dodecyl sulfate and demonstrate a new approach to quantify the characteristic rate constants which is independent of mass transfer interference and long term drifts of the measured signal. This method has been investigated theoretically by Monte-Carlo simulations but so far there has been no sensor technology with a sufficient signal-to-noise ratio.rnSecond, I apply plasmonic nanoparticles as sensors for the determination of diffusion coefficients. Thereby, the sensing volume of a single, immobilized nanorod is used as detection volume. When a diffusing particle enters the detection volume a shift in the resonance wavelength is introduced. As no labeling of the analyte is necessary the hydrodynamic radius and thus the diffusion properties are not altered and can be studied in their natural form. In comparison to the conventional Fluorescence Correlation Spectroscopy technique a volume reduction by a factor of 5000-10000 is reached.
Resumo:
We present a study of the adsorption of two peptides at the octane–water interface. The first peptide, Lac21, exists in mixed monomer–tetramer equilibrium in bulk solution with an appreciable monomer concentration. The second peptide, Lac28, exists as a tetramer in solution, with minimal exposed hydrophobic surface. A kinetic limitation to interfacial adsorption exists for Lac28 at moderate to high surface coverage that is not observed for Lac21. We estimate the potential energy barrier for Lac28 adsorption to be 42 kJ/mol and show that this is comparable to the expected free energy barrier for tetramer dissociation. This finding suggests that, at moderate to high surface coverage, adsorption is kinetically limited by the availability of interfacially active monomeric “domains” in the subinterfacial region. We also show how the commonly used empirical equation for protein adsorption dynamics can be used to estimate the potential energy barrier for adsorption. Such an approach is shown to be consistent with a formal description of diffusion–adsorption, provided a large potential energy barrier exists. This work demonstrates that the dynamics of interfacial adsorption depend on protein thermodynamic stability, and hence structure, in a quantifiable way.
Resumo:
Carbon nanotubes exhibit the structure and chemical properties that make them apt substrates for many adsorption applications. Of particular interest are carbon nanotube bundles, whose unique geometry is conducive to the formation of pseudo-one-dimensional phases of matter, and graphite, whose simple planar structure allows ordered phases to form in the absence of surface effects. Although both of these structures have been the focus of many research studies, knowledge gaps still remain. Much of the work with carbon nanotubes has used simple adsorbates1-43, and there is little kinetic data available. On the other hand, there are many studies of complex molecules adsorbing on graphite; however, there is almost no kinetic data reported for this substrate. We seek to close these knowledge gaps by performing a kinetic study of linear molecules of increasing length adsorbing on carbon nanotube bundles and on graphite. We elucidated the process of adsorption of complex admolecules on carbon nanotube bundles, while at the same time producing some of the first equilibrium results of the films formed by large adsorbates on these structures. We also extended the current knowledge of adsorption on graphite to include the kinetics of adsorption. The kinetic data that we have produced enables a more complete understanding of the process of adsorption of large admolecules on carbon nanotube bundles and graphite. We studied the adsorption of particles on carbon nanotube bundles and graphite using analytical and computational techniques. By employing these methods separately but in parallel, we were able to constantly compare and verify our results. We calculated and simulated the behavior of a given system throughout its evolution and then analyzed our results to determine which system parameters have the greatest effect on the kinetics of adsorption. Our analytical and computational results show good agreement with each other and with the experimental isotherm data provided by our collaborators. As a result of this project, we have gained a better understanding of the kinetics of adsorption. We have learned about the equilibration process of dimers on carbon nanotube bundles, identifying the “filling effect”, which increases the rate of total uptake, and explaining the cause of the transient “overshoot” in the coverage of the surface. We also measured the kinetic effect of particle-particle interactions between neighboring adsorbates on the lattice. For our simulations of monomers adsorbing on graphite, we succeeded in developing an analytical equation to predict the characteristic time as a function of chemical potential and of the adsorption and interaction energies of the system. We were able to further explore the processes of adsorption of dimers and trimers on graphite (again observing the filling effect and the overshoot). Finally, we were able to show that the kinetic behaviors of monomers, dimers, and trimers that have been reported in experimental results also arise organically from our model and simulations.
Resumo:
With global warming becoming one of the main problems our society is facing nowadays, there is an urgent demand to develop materials suitable for CO2 storage as well as for gas separation. Within this context, hierarchical porous structures are of great interest for in-flow applications because of the desirable combination of an extensive internal reactive surface along narrow nanopores with facile molecular transport through broad “highways” leading to and from these pores. Deep eutectic solvents (DESs) have been recently used in the synthesis of carbon monoliths exhibiting a bicontinuous porous structure composed of continuous macroporous channels and a continuous carbon network that contains a certain microporosity and provides considerable surface area. In this work, we have prepared two DESs for the preparation of two hierarchical carbon monoliths with different compositions (e.g., either nitrogen-doped or not) and structure. It is worth noting that DESs played a capital role in the synthesis of hierarchical carbon monoliths not only promoting the spinodal decomposition that governs the formation of the bicontinuous porous structure but also providing the precursors required to tailor the composition and the molecular sieve structure of the resulting carbons. We have studied the performance of these two carbons for CO2, N2, and CH4 adsorption in both monolithic and powdered form. We have also studied the selective adsorption of CO2 versus CH4 in equilibrium and dynamic conditions. We found that these materials combined a high CO2-sorption capacity besides an excellent CO2/N2 and CO2/CH4 selectivity and, interestingly, this performance was preserved when processed in both monolithic and powdered form.
Resumo:
This study is focused on the synthesis and application of glycerol-based carbon materials (GBCM200, GBCM300 and GBCM350) as adsorbents for the removal of the antibiotic compounds flumequine and tetracycline from aqueous solution. The synthesis enrolled the partial carbonization of a glycerol-sulfuric acid mixture, followed by thermal treatments under inert conditions and further thermal activation under oxidative atmosphere. The textural properties were investigated through N2 adsorption–desorption isotherms, and the presence of oxygenated groups was discussed based on zeta potential and Fourier transform infrared (FTIR) data. The kinetic data revealed that the equilibrium time for flumequine adsorption was achieved within 96 h, while for tetracycline, it was reached after 120 h. Several kinetic models, i.e., pseudo-first order, pseudo-second order, fractional power, Elovich and Weber–Morris models, were applied, finding that the pseudo-second order model was the most suitable for the fitting of the experimental kinetic data. The estimated surface diffusion coefficient values, Ds, of 3.88 and 5.06 10 14 m2 s 1, suggests that the pore diffusion is the rate limiting step of the adsorption process. Finally, as it is based on SSE values, Sips model well-fitted the experimental FLQ and TCN adsorption isotherm data, followed by Freundlich equation. The maximum adsorption capacities for flumequine and tetracycline was of 41.5 and 58.2 mg g 1 by GBCM350 activated carbon.
Resumo:
The microstructure of a carbon molecular sieve membrane (CMSM) is characterized using adsorption equilibrium information. The pore size distributions of the CMSM derived from N-2 and CH4 adsorption isotherm are found to be consistent with each other and in agreement with the results of gas permeation experiments as well as the general characteristics of such molecular sieve materials. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In this paper we analyzed the adsorption of a large number of gases and vapors on graphitized thermal carbon black. The Henry constant was used to determine the adsorbate-adsorbent interaction energy, which is found to be a modest decreasing function of temperature. Analysis of the complete adsorption isotherm over a wider range of pressure yields information on the monolayer coverage concentration and the adsorbate-adsorbate interaction energy. Among the various equations tested, the Hill-de Boer equation accounting for BET-postulated multilayer formation describes well the adsorption isotherms of all adsorbates. On average, the adsorbate-adsorbate interaction energy in the adsorbed phase is less than that in the bulk phase, suggesting that the distance between adsorbed molecules in the first layer of the adsorbed phase is slightly less than the equilibrium distance between two adsorbate molecules in the bulk phase. This suggests that the first layer is in a compressed state, which is due to the attraction of the adsorbent surface. The monolayer concentration as determined from the fitting of the Hill-de Boer equation with experimental data is slightly larger than the values calculated from the molecular projection area, suggesting that molecules can be oriented such that a larger number of molecules can be accommodated on the carbon black surface. This further supports the shorter distance between adsorbate molecules in the adsorbed phase.
Resumo:
We study here the adsorption of hexane on nanoporous MCM-41 silica at 303, 313, and 323 K, for various pore diameters between 2.40 and 4.24 nm. Adsorption equilibria, measured thermogravimetrically, show that all the isotherms, that are somewhat akin to those of type V, exhibit remarkably sharp capillary adsorption phase transition steps and are reversible. The position of the phase transition step gradually shifts from low to high relative pressure with an increase in the temperature as well as the pore sizes. The isosteric heats of adsorption derived from the equilibrium information using the Clapeyron equation reveal a gradual decrease with increasing adsorbed amount because of the surface heterogeneity but approach a constant value near the phase transition. A decrease in the pore size results in an increase in the isosteric heat of adsorption because of the increased dispersion forces. A simple strategy, based on the Broekhoff and De Boer adsorption theory, successfully interprets the hexane adsorption isotherms for the different pore size MCM-41 samples. The parameters of an empirical expression, used to represent the potential of interaction between the adsorbate and adsorbent, are obtained by fitting the monolayer region prior to capillary condensation and the experimental phase transition simultaneously, for some pore sizes. Subsequently, the parameters are used to predict the adsorption isotherm on other pore size samples, which showed good agreement with experimental data.
Resumo:
Adsorption of argon and nitrogen at their respective boiling points in cylindrical pores of MCM-41 type silica-like adsorbents is studied by means of a non-local density functional theory (NLDFT), which is modified to deal with amorphous solids. By matching the theoretical results of the pore filling pressure versus pore diameter against the experimental data, we arrive at a conclusion that the adsorption branch (rather than desorption) corresponds to the true thermodynamic equilibrium. If this is accepted, we derive the optimal values for the solid–fluid molecular parameters for the system amorphous silica–Ar and amorphous silica–N2, and at the same time we could derive reliably the specific surface area of non-porous and mesoporous silica-like adsorbents, without a recourse to the BET method. This method is then logically extended to describe the local adsorption isotherms of argon and nitrogen in silica-like pores, which are then used as the bases (kernel) to determine the pore size distribution. We test this with a number of adsorption isotherms on the MCM-41 samples, and the results are quite realistic and in excellent agreement with the XRD results, justifying the approach adopted in this paper.