949 resultados para Equações diferenciais não-lineares - Solução analítica aproximada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A engenharia geotécnica é uma das grandes áreas da engenharia civil que estuda a interação entre as construções realizadas pelo homem ou de fenômenos naturais com o ambiente geológico, que na grande maioria das vezes trata-se de solos parcialmente saturados. Neste sentido, o desempenho de obras como estabilização, contenção de barragens, muros de contenção, fundações e estradas estão condicionados a uma correta predição do fluxo de água no interior dos solos. Porém, como a área das regiões a serem estudas com relação à predição do fluxo de água são comumente da ordem de quilômetros quadrados, as soluções dos modelos matemáticos exigem malhas computacionais de grandes proporções, ocasionando sérias limitações associadas aos requisitos de memória computacional e tempo de processamento. A fim de contornar estas limitações, métodos numéricos eficientes devem ser empregados na solução do problema em análise. Portanto, métodos iterativos para solução de sistemas não lineares e lineares esparsos de grande porte devem ser utilizados neste tipo de aplicação. Em suma, visto a relevância do tema, esta pesquisa aproximou uma solução para a equação diferencial parcial de Richards pelo método dos volumes finitos em duas dimensões, empregando o método de Picard e Newton com maior eficiência computacional. Para tanto, foram utilizadas técnicas iterativas de resolução de sistemas lineares baseados no espaço de Krylov com matrizes pré-condicionadoras com a biblioteca numérica Portable, Extensible Toolkit for Scientific Computation (PETSc). Os resultados indicam que quando se resolve a equação de Richards considerando-se o método de PICARD-KRYLOV, não importando o modelo de avaliação do solo, a melhor combinação para resolução dos sistemas lineares é o método dos gradientes biconjugados estabilizado mais o pré-condicionador SOR. Por outro lado, quando se utiliza as equações de van Genuchten deve ser optar pela combinação do método dos gradientes conjugados em conjunto com pré-condicionador SOR. Quando se adota o método de NEWTON-KRYLOV, o método gradientes biconjugados estabilizado é o mais eficiente na resolução do sistema linear do passo de Newton, com relação ao pré-condicionador deve-se dar preferência ao bloco Jacobi. Por fim, há evidências que apontam que o método PICARD-KRYLOV pode ser mais vantajoso que o método de NEWTON-KRYLOV, quando empregados na resolução da equação diferencial parcial de Richards.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neste trabalho o método LTSN é utilizado para resolver a equação de transporte de fótons para uma placa plana heterogênea, modelo de multigrupo, com núcleo de espalhamento de Klein-Nishina, obtendo-se o fluxo de fótons em valores discretos de energia. O fluxo de fótons, juntamente com os parâmetros da placa foram usados para o cálculo da taxa de dose absorvida e do fator de buildup. O método LTSN consiste na aplicação da transformada de Laplace num conjunto de equações de ordenadas discretas, fornece uma solução analítica do sistema de equações lineares algébricas e a construção dos fluxos angulares pela técnica de expansão de Heaviside. Essa formulação foi aplicada ao cálculo de dose absorvida e ao fator de Buildup, considerando cinco valores de energia. Resultados numéricos são apresentados.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A produção de soja é uma das principais atividades econômicas na Região Noroeste do Estado do Rio Grande do Sul. As perdas de produto em condições de comercialização ocasionadas nas atividades de secagem e armazenamento são significativas, justificando a pesquisa e aprimoramento destes processos. Nesta tese foram pesquisados dois problemas: 1. Modelamento matemático dos processos de secagem, utilizando parâmetros conhecidos de soja e 2. Modelamento matemático do problema de aeração para o cálculo da distribuição da pressão e da velocidade do ar na massa de grãos em unidades de armazenamento de soja. No problema de secagem foi desenvolvido um sistema composto de quatro equações diferenciais parciais hiperbólicas acopladas não-lineares, que descreve o comportamento da temperatura e do teor de umidade do ar e dos grãos em função do tempo. Para resolver o sistema foram utilizados os métodos das diferenças finitas (p. ex., métodos de MacCormack e Crank- Nicolson.) e o método dos volumes finitos. A análise dos resultados permitiu recomendar o método mais adequado para cada tipo do problema. Para determinação da intensidade do fluxo de massa e de calor foram utilizados os dados experimentais de camada fina obtidos da literatura e complementados com dados experimentais desta tese. Foi desenvolvido um equipamento para obtenção das curvas de secagem de grãos em secador de leito fixo, a fim de identificar o modelo para secagem em camada espessa. A comparação entre os resultados experimentais e das simulações numéricas mostrou que o modelo descreve razoavelmente a dinâmica de secagem No problema de aeração foi desenvolvido um modelo matemático que descreve o escoamento do ar em sistemas de armazenamento de grãos, baseado em relações experimentais entre velocidade e gradiente de pressão. Para resolver o problema de aeração foi utilizado o método dos elementos finitos e desenvolvido um programa computacional. Um teste realizado com o programa mostrou que os resultados da solução numérica convergem para uma solução analítica conhecida. As simulações realizadas mostraram que o programa computacional pode ser usado como instrumento auxiliar para o projeto de silos, possibilitando o cálculo e a visualização gráfica da distribuição das pressões e das linhas de corrente em diferentes seções do armazém.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vários métodos analíticos, numéricos e híbridos podem ser utilizados na solução de problemas de difusão e difusão-advecção. O objetivo deste trabalho é apresentar dois métodos analíticos para obtenção de soluções em forma fechada da equação advectivo-difusiva em coordenadas cartesianas que descreve problemas de dispersão de poluentes na água e na atmosfera. Um deles é baseado em regras de manipulação de exponenciais de operadores diferenciais, e o outro consiste na aplicação de simetrias de Lie admitidas por uma equação diferencial parcial linear. Desenvolvem-se regras para manipulação de exponenciais de operadores diferenciais de segunda ordem com coeficientes constantes e para operadores advectivo-difusivos. Nos casos em que essas regras não podem ser aplicadas utiliza-se uma formulação para a obtenção de simetrias de Lie, admitidas por uma equação diferencial, via mapeamento. Define-se um operador diferencial com a propriedade de transformar soluções analíticas de uma dada equação diferencial em novas soluções analíticas da mesma equação. Nas aplicações referentes à dispersão de poluentes na água, resolve-se a equação advectivo-difusiva bidimensional com coeficientes variáveis, realizando uma mudança de variáveis de modo a reescrevê-la em termos do potencial velocidade e da função corrente correspondentes ao respectivo escoamento potencial, estendendo a solução para domínios de contornos arbitrários Na aplicação referente ao problema de dispersão de poluentes na atmosfera, realiza-se uma mudança de variáveis de modo a obter uma equação diferencial parcial com coeficientes constantes na qual se possam aplicar as regras de manipulação de exponenciais de operadores diferenciais. Os resultados numéricos obtidos são comparados com dados disponíveis na literatura. Diversas vantagens da aplicação das formulações apresentadas podem ser citadas, a saber, o aumento da velocidade de processamento, permitindo a obtenção de solução em tempo real; a redução da quantidade de memória requerida na realização de operações necessárias para a obtenção da solução analítica; a possibilidade de dispensar a discretização do domínio em algumas situações.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O item não apresenta o texto completo, para aquisição do livro na íntegra você poderá acessar a Editora da UFSCar por meio do link: www.editora.ufscar.br

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sistemas dinâmicos são todos os sistemas que evoluem no tempo, qualquer que seja a sua natureza, isto é, sistemas fisícos, biológicos, químicos, sociais, económicos, etc.. Esta evoluçãoo pode ser descrita (modelada) por equaçõess de diferenças, uma vez que esse tempo é muitas vezes medido em intervalos discretos. As equações de diferenças aparecem também quando se estuda métodos para a discretização de equações diferenciais. Assim, este trabalho tem por principal objectivo estudar as soluções de alguns tipos de equações de diferenças. Para isso, começa-se por introduzir o conceito de diferença e a sua relação com as equações de diferenças. Em seguida, determina-se a solução geral das todas as equações lineares de primeira ordem, bem como o estudo do seu comportamento assimptótico. Prossegue-se, desenvolvendo as principais técnicas para determinar a soluçãoo de equações de diferenças lineares de qualquer ordem. Em particular, estudam-se as equações com coeficientes constantes. Depois de se desenvolver a teoria básica dos sistemas lineares de equações de diferenças, particulariza-se aos sistemas lineares autónomos,com apenas duas variáveis dependentes, fazendo assim o estudo do comportamento das soluções no plano de fases. Por fim, utiliza-se a transformada Z como uma ferramenta que permite resolver equações de diferenças, em especial as equações de tipo convolução.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Matemática - IBILCE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Matemática - IBILCE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Matemática Universitária - IGCE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neste trabalho obtém-se uma solução analítica para a equação de advecção-difusão aplicada a problemas de dispersão de poluentes em rios e canais. Para tanto, consideram-se os casos unidimensionais e bidimensionais em regime transiente com coeficientes de difusividade e velocidades constantes. A abordagem utilizada para a resolução deste problema é o método de Separação de Variáveis. Os modelos resolvidos foram simulados utilizando o MatLab. Apresentam-se os resultados das simulações numéricas em formato gráfico. Os resultados de algumas simulações numéricas existem na literatura e puderam ser comparados. O modelo proposto mostrou-se coerente em relação aos dados considerados. Para outras simulações não foram encontrados comparativos na literatura, todavia esses problemas governados por equações diferenciais parciais, mesmo lineares, não são de fácil solução analítica. Sendo que, muitas delas representam importantes problemas de matemática e física, com diversas aplicações na engenharia. Dessa forma, é de grande importância a disponibilidade de um maior número de problemas-teste para avaliação de desempenho de formulações numéricas, cada vez mais eficazes, já que soluções analíticas oferecem uma base mais segura para comparação de resultados.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Um método de Matriz Resposta (MR) é descrito para gerar soluções numéricas livres de erros de truncamento espacial para problemas multigrupo de transporte de nêutrons com fonte fixa e em geometria unidimensional na formulação de ordenadas discretas (SN). Portanto, o método multigrupo MR com esquema iterativo de inversão nodal parcial (NBI) converge valores numéricos para os fluxos angulares nas fronteiras das regiões que coincidem com os valores da solução analítica das equações multigrupo SN, afora os erros de arredondamento da aritmética finita computacional. É também desenvolvido um esquema numérico de reconstrução espacial, que fornece a saída para os fluxos escalares de nêutrons em cada grupo de energia em um intervalo qualquer do domínio definido pelo usuário, com um passo de avanço também escolhido pelo usuário. Resultados numéricos são apresentados para ilustrar a precisão do presente método em cálculos de malha grossa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

É conhecido que derivações microscópicas obtidas através de métodos de teoria quântica de campos (TQC) podem conduzir a complicadas equações de movimento (EdM) que possuem um termo dissipativo com memória e um termo de ruído colorido. Um caso particularmente interessante é o modelo que escreve a interação entre um sistema e um banho térmico a temperatura T. Motivado por isso, usamos uma prescrição que nos permite reescrever EdMs não-markovianas semelhantes as obtidas em TQC em termos de um sistema de equações locais, para então confrontarmos a solução desse sistema com a solução aproximada usada correntemente na literatura, a chamada aproximação markoviana. A pergunta chave a qual se pretende responder aqui é: dado um conjunto de parâmetros que descrevem o modelo, a aproximação markoviana é suficientemente boa para descrever a dinâmica do sistema se comparada a dinâmica obtida atravéS da EdM não-markoviana? Além disso, consideramos uma versão linear da ELG de forma que pudéssemos determinar o nível de confiança da nossa metodologia numérica, procedimento este realizado comparando-se a solução analítica com a solução numérica. Como exemplo de aplicação prática do tema discutido aqui, comparamos a evolução não-markoviana do inflaton com a evolução markoviana do mesmo num modelo de universo primordial denominado inflação não-isentrópica (warm inflation).