998 resultados para Epileptic Patients
Resumo:
A focused and commented review on the impact of dermatologic diseases and interventions in the solidary act of donating blood is presented to dermatologists to better advise their patients. This is a review of current Brazilian technical regulations on hemotherapeutic procedures as determined by Ministerial Directive #1353/2011 by the Ministry of Health and current internal regulations of the Hemotherapy Center of Ribeirão Preto, a regional reference center in hemotherapeutic procedures. Criteria for permanent inaptitude: autoimmune diseases (>1 organ involved), personal history of cancer other than basal cell carcinoma, severe atopic dermatitis or psoriasis, pemphigus foliaceus, porphyrias, filariasis, leprosy, extra pulmonary tuberculosis or paracoccidioidomycosis, and previous use of etretinate. Drugs that impose temporary ineligibility: other systemic retinoids, systemic corticosteroids, 5-alpha-reductase inhibitors, vaccines, methotrexate, beta-blockers, minoxidil, anti-epileptic, and anti-psychotic drugs. Other conditions that impose temporary ineligibility: occupational accident with biologic material, piercing, tattoo, sexually transmitted diseases, herpes, and bacterial infections, among others. Discussion: Thalidomide is currently missing in the teratogenic drugs list. Although finasteride was previously considered a drug that imposed permanent inaptitude, according to its short halflife current restriction of 1 month is still too long. Dermatologists should be able to advise their patients about proper timing to donate blood, and discuss the impact of drug withdrawal on treatment outcomes and to respect the designated washout periods.
Resumo:
Epileptic seizures typically reveal a high degree of stereotypy, that is, for an individual patient they are characterized by an ordered and predictable sequence of symptoms and signs with typically little variability. Stereotypy implies that ictal neuronal dynamics might have deterministic characteristics, presumably most pronounced in the ictogenic parts of the brain, which may provide diagnostically and therapeutically important information. Therefore the goal of our study was to search for indications of determinism in periictal intracranial electroencephalography (EEG) studies recorded from patients with pharmacoresistent epilepsy.
Resumo:
Epileptic seizures are due to the pathological collective activity of large cellular assemblies. A better understanding of this collective activity is integral to the development of novel diagnostic and therapeutic procedures. In contrast to reductionist analyses, which focus solely on small-scale characteristics of ictogenesis, here we follow a systems-level approach, which combines both small-scale and larger-scale analyses. Peri-ictal dynamics of epileptic networks are assessed by studying correlation within and between different spatial scales of intracranial electroencephalographic recordings (iEEG) of a heterogeneous group of patients suffering from pharmaco-resistant epilepsy. Epileptiform activity as recorded by a single iEEG electrode is determined objectively by the signal derivative and then subjected to a multivariate analysis of correlation between all iEEG channels. We find that during seizure, synchrony increases on the smallest and largest spatial scales probed by iEEG. In addition, a dynamic reorganization of spatial correlation is observed on intermediate scales, which persists after seizure termination. It is proposed that this reorganization may indicate a balancing mechanism that decreases high local correlation. Our findings are consistent with the hypothesis that during epileptic seizures hypercorrelated and therefore functionally segregated brain areas are re-integrated into more collective brain dynamics. In addition, except for a special sub-group, a highly significant association is found between the location of ictal iEEG activity and the location of areas of relative decrease of localised EEG correlation. The latter could serve as a clinically important quantitative marker of the seizure onset zone (SOZ).
Resumo:
We investigated the contribution of postictal memory testing for lateralizing the epileptic focus and predicting memory outcome after surgery for temporal lobe epilepsy (TLE). Forty-five patients with TLE underwent interictal, postictal, and postoperative assessment of verbal and nonverbal memory. Surgery consisted of anterior temporal lobectomy (36), selective isolated amygdalohippocampectomy (6), or amygdalohippocampectomy coupled to lesionectomy (3). Postictal and postoperative but not interictal memory were significantly lower in left TLE than in right TLE. Nonverbal memory showed no significant difference in left TLE versus right TLE in all conditions. Postictal memory was significantly correlated with postoperative memory, but the effect disappeared when the lateralization of the focus was considered. Postictal verbal memory is a useful bedside tool that can help lateralize the epileptic focus. Larger studies are needed to further estimate its predictive value of the postoperative outcome.
Resumo:
Deep brain stimulation (DBS) of different nuclei is being evaluated as a treatment for epilepsy. While encouraging results have been reported, the effects of changes in stimulation parameters have been poorly studied. Here the effects of changes of pulse waveform in high frequency DBS (130 Hz) of the amygdala-hippocampal complex (AH) are presented. These effects were studied on interictal epileptic discharge rates (IEDRs). AH-DBS was implemented with biphasic versus pseudo monophasic charge balanced pulses, in two groups of patients: six with temporal lobe epilepsy (TLE) associated with hippocampal sclerosis (HS) and six with non lesional (NLES) temporal epilepsy. In patients with HS, IEDRs were significantly reduced with AH-DBS applied with biphasic pulses in comparison with monophasic pulse. IEDRs were significantly reduced in only two patients with NLES independently to stimulus waveform. Comparison to long-term seizure outcome suggests that IEDRs could be used as a neurophysiological marker of chronic AH-DBS and they suggest that the waveform of the electrical stimuli can play a major role in DBS. We concluded that biphasic stimuli are more efficient than pseudo monophasic pulses in AH-DBS in patients with HS. In patients with NLES epilepsy, other parameters relevant for efficacy of DBS remain to be determined.
Resumo:
BACKGROUND AND PURPOSE: Perfusion CT (P-CT) is used for acute stroke management, not, however, for evaluating epilepsy. To test the hypothesis that P-CT may identify patients with increased regional cerebral blood flow during subtle status epilepticus (SSE), we compared P-CT in SSE to different postictal conditions. METHODS: Fifteen patients (mean age 47 years, range 21-74) underwent P-CT immediately after evaluation in our emergency room. Asymmetry indices between affected and unaffected hemispheres were calculated for regional cerebral blood volume (rCBV), regional cerebral blood flow (rCBF), and mean transit time (MTT). Regional perfusion changes were compared to EEG findings. RESULTS: Three patients in subtle status epilepticus (group 1) had increased regional perfusion with electro-clinical correlate. Six patients showed postictal slowing on EEG corresponding to an area of regional hypoperfusion (group 2). CT and EEG were normal in six patients with a first epileptic seizure (group 3). Cluster analysis of asymmetry indices separated SSE from the other two groups in all three parameters, while rCBF helped to distinguish between chronic focal epilepsies and single events. CONCLUSION: Preliminary results indicate that P-CT may help to identify patients with SSE during emergency workup. This technique provides important information to neurologists or emergency physicians in the difficult clinical differential diagnosis of altered mental status due to subtle status epilepticus.
Resumo:
Combined EEG/fMRI recordings offer a promising opportunity to detect brain areas with altered BOLD signal during interictal epileptic discharges (IEDs). These areas are likely to represent the irritative zone, which is itself a reflection of the epileptogenic zone. This paper reports on the imaging findings using independent component analysis (ICA) to continuously quantify epileptiform activity in simultaneously acquired EEG and fMRI. Using ICA derived factors coding for the epileptic activity takes into account that epileptic activity is continuously fluctuating with each spike differing in amplitude, duration and maybe topography, including subthreshold epileptic activity besides clear IEDs and may thus increase the sensitivity and statistical power of combined EEG/fMRI in epilepsy. Twenty patients with different types of focal and generalized epilepsy syndromes were investigated. ICA separated epileptiform activity from normal physiological brain activity and artifacts. In 16/20 patients, BOLD correlates of epileptic activity matched the EEG sources, the clinical semiology, and, if present, the structural lesions. In clinically equivocal cases, the BOLD correlates aided to attribute proper diagnosis of the underlying epilepsy syndrome. Furthermore, in one patient with temporal lobe epilepsy, BOLD correlates of rhythmic delta activity could be employed to delineate the affected hippocampus. Compared to BOLD correlates of manually identified IEDs, the sensitivity was improved from 50% (10/20) to 80%. The ICA EEG/fMRI approach is a safe, non-invasive and easily applicable technique, which can be used to identify regions with altered hemodynamic effects related to IEDs as well as intermittent rhythmic discharges in different types of epilepsy.
Resumo:
Both deepening sleep and evolving epileptic seizures are associated with increasing slow-wave activity. Larger-scale functional networks derived from electroencephalogram indicate that in both transitions dramatic changes of communication between brain areas occur. During seizures these changes seem to be 'condensed', because they evolve more rapidly than during deepening sleep. Here we set out to assess quantitatively functional network dynamics derived from electroencephalogram signals during seizures and normal sleep. Functional networks were derived from electroencephalogram signals from wakefulness, light and deep sleep of 12 volunteers, and from pre-seizure, seizure and post-seizure time periods of 10 patients suffering from focal onset pharmaco-resistant epilepsy. Nodes of the functional network represented electrical signals recorded by single electrodes and were linked if there was non-random cross-correlation between the two corresponding electroencephalogram signals. Network dynamics were then characterized by the evolution of global efficiency, which measures ease of information transmission. Global efficiency was compared with relative delta power. Global efficiency significantly decreased both between light and deep sleep, and between pre-seizure, seizure and post-seizure time periods. The decrease of global efficiency was due to a loss of functional links. While global efficiency decreased significantly, relative delta power increased except between the time periods wakefulness and light sleep, and pre-seizure and seizure. Our results demonstrate that both epileptic seizures and deepening sleep are characterized by dramatic fragmentation of larger-scale functional networks, and further support the similarities between sleep and seizures.
Resumo:
Epileptic seizures are associated with high behavioral stereotypy of the patients. In the EEG of epilepsy patients characteristic signal patterns can be found during and between seizures. Here we use ordinal patterns to analyze EEGs of epilepsy patients and quantify the degree of signal determinism. Besides relative signal redundancy and the fraction of forbidden patterns we introduce the fraction of under-represented patterns as a new measure. Using the logistic map, parameter scans are performed to explore the sensitivity of the measures to signal determinism. Thereafter, application is made to two types of EEGs recorded in two epilepsy patients. Intracranial EEG shows pronounced determinism peaks during seizures. Finally, we demonstrate that ordinal patterns may be useful for improving analysis of non-invasive simultaneous EEG-fMRI.
Resumo:
Epileptic seizures of focal origin are classically considered to arise from a focal epileptogenic zone and then spread to other brain regions. This is a key concept for semiological electro-clinical correlations, localization of relevant structural lesions, and selection of patients for epilepsy surgery. Recent development in neuro-imaging and electro-physiology and combinations, thereof, have been validated as contributory tools for focus localization. In parallel, these techniques have revealed that widespread networks of brain regions, rather than a single epileptogenic region, are implicated in focal epileptic activity. Sophisticated multimodal imaging and analysis strategies of brain connectivity patterns have been developed to characterize the spatio-temporal relationships within these networks by combining the strength of both techniques to optimize spatial and temporal resolution with whole-brain coverage and directional connectivity. In this paper, we review the potential clinical contribution of these functional mapping techniques as well as invasive electrophysiology in human beings and animal models for characterizing network connectivity.
Resumo:
Epileptic encephalopathies are a phenotypically and genetically heterogeneous group of severe epilepsies accompanied by intellectual disability and other neurodevelopmental features. Using next-generation sequencing, we identified four different de novo mutations in KCNA2, encoding the potassium channel KV1.2, in six isolated patients with epileptic encephalopathy (one mutation recurred three times independently). Four individuals presented with febrile and multiple afebrile, often focal seizure types, multifocal epileptiform discharges strongly activated by sleep, mild to moderate intellectual disability, delayed speech development and sometimes ataxia. Functional studies of the two mutations associated with this phenotype showed almost complete loss of function with a dominant-negative effect. Two further individuals presented with a different and more severe epileptic encephalopathy phenotype. They carried mutations inducing a drastic gain-of-function effect leading to permanently open channels. These results establish KCNA2 as a new gene involved in human neurodevelopmental disorders through two different mechanisms, predicting either hyperexcitability or electrical silencing of KV1.2-expressing neurons.
Resumo:
Hippocampal sclerosis is the most frequent pathology encountered in resected mesial temporal structures from patients with intractable temporal lobe epilepsy (TLE). Here, we have used stereological methods to compare the overall density of synapses and neurons between non-sclerotic and sclerotic hippocampal tissue obtained by surgical resection from patients with TLE. Specifically, we examined the possible changes in the subiculum and CA1, regions that seem to be critical for the development and/or maintenance of seizures in these patients. We found a remarkable decrease in synaptic and neuronal density in the sclerotic CA1, and while the subiculum from the sclerotic hippocampus did not display changes in synaptic density, the neuronal density was higher. Since the subiculum from the sclerotic hippocampus displays a significant increase in neuronal density, as well as a various other neurochemical changes, we propose that the apparently normal subiculum from the sclerotic hippocampus suffers profound alterations in neuronal circuits at both the molecular and synaptic level that are likely to be critical for the development or maintenance of seizure activity
Resumo:
OBJECTIVE Epilepsy is increasingly considered as the dysfunction of a pathologic neuronal network (epileptic network) rather than a single focal source. We aimed to assess the interactions between the regions that comprise the epileptic network and to investigate their dependence on the occurrence of interictal epileptiform discharges (IEDs). METHODS We analyzed resting state simultaneous electroencephalography-functional magnetic resonance imaging (EEG-fMRI) recordings in 10 patients with drug-resistant focal epilepsy with multifocal IED-related blood oxygen level-dependent (BOLD) responses and a maximum t-value in the IED field. We computed functional connectivity (FC) maps of the epileptic network using two types of seed: (1) a 10-mm diameter sphere centered in the global maximum of IED-related BOLD map, and (2) the independent component with highest correlation to the IED-related BOLD map, named epileptic component. For both approaches, we compared FC maps before and after regressing out the effect of IEDs in terms of maximum and mean t-values and percentage of map overlap. RESULTS Maximum and mean FC maps t-values were significantly lower after regressing out IEDs at the group level (p < 0.01). Overlap extent was 85% ± 12% and 87% ± 12% when the seed was the 10-mm diameter sphere and the epileptic component, respectively. SIGNIFICANCE Regions involved in a specific epileptic network show coherent BOLD fluctuations independent of scalp EEG IEDs. FC topography and strength is largely preserved by removing the IED effect. This could represent a signature of a sustained pathologic network with contribution from epileptic activity invisible to the scalp EEG.
Resumo:
Although the majority of people with epilepsy have a good prognosis and their seizures can be well controlled with pharmacotherapy, up to one-third of patients can develop drug-resistant epilepsy, especially those patients with partial seizures. This unmet need has driven considerable efforts over the last few decades aimed at developing and testing newer antiepileptic agents to improve seizure control. One of the most promising antiepileptic drugs of the new generation is zonisamide, a benzisoxazole derivative chemically unrelated to other anticonvulsant agents. In this article, the authors present the results of a systematic literature review summarizing the current evidence on the efficacy and tolerability of zonisamide for the treatment of partial seizures. Of particular interest within this updated review are the recent data on the use of zonisamide as monotherapy, as they might open new therapeutic avenues. © 2014 Springer Healthcare.
Resumo:
OBJECTIVE: The discipline of clinical neuropsychiatry currently provides specialised services for a number of conditions that cross the traditional boundaries of neurology and psychiatry, including non-epileptic attack disorder. Neurophysiological investigations have an important role within neuropsychiatry services, with video-electroencephalography (EEG) telemetry being the gold standard investigation for the differential diagnosis between epileptic seizures and non-epileptic attacks. This article reviews existing evidence on best practices for neurophysiology investigations, with focus on safety measures for video-EEG telemetry. METHODS: We conducted a systematic literature review using the PubMed database in order to identify the scientific literature on the best practices when using neurophysiological investigations in patients with suspected epileptic seizures or non-epileptic attacks. RESULTS: Specific measures need to be implemented for video-EEG telemetry to be safely and effectively carried out by neuropsychiatry services. A confirmed diagnosis of non-epileptic attack disorder following video-EEG telemetry carried out within neuropsychiatry units has the inherent advantage of allowing diagnosis communication and implementation of treatment strategies in a timely fashion, potentially improving clinical outcomes and cost-effectiveness significantly. CONCLUSION: The identified recommendations set the stage for the development of standardised guidelines to enable neuropsychiatry services to implement streamlined and evidence-based care pathways.