979 resultados para Epidemiology, Molecular


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Alveolar echinococcosis, caused by the tapeworm Echinococcus multilocularis, is one of the most severe parasitic diseases in humans and represents one of the 17 neglected diseases prioritised by the World Health Organisation (WHO) in 2012. Considering the major medical and veterinary importance of this parasite, the phylogeny of the genus Echinococcus is of considerable importance; yet, despite numerous efforts with both mitochondrial and nuclear data, it has remained unresolved. The genus is clearly complex, and this is one of the reasons for the incomplete understanding of its taxonomy. Although taxonomic studies have recognised E. multilocularis as a separate entity from the Echinococcus granulosus complex and other members of the genus, it would be premature to draw firm conclusions about the taxonomy of the genus before the phylogeny of the whole genus is fully resolved. The recent sequencing of E. multilocularis and E. granulosus genomes opens new possibilities for performing in-depth phylogenetic analyses. In addition, whole genome data provide the possibility of inferring phylogenies based on a large number of functional genes, i.e. genes that trace the evolutionary history of adaptation in E. multilocularis and other members of the genus. Moreover, genomic data open new avenues for studying the molecular epidemiology of E. multilocularis: genotyping studies with larger panels of genetic markers allow the genetic diversity and spatial dynamics of parasites to be evaluated with greater precision. There is an urgent need for international coordination of genotyping of E. multilocularis isolates from animals and human patients. This could be fundamental for a better understanding of the transmission of alveolar echinococcosis and for designing efficient healthcare strategies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The worldwide threat of tuberculosis to human health emphasizes the need to develop novel approaches to a global epidemiological surveillance. The current standard for Mycobacterium tuberculosis typing based on IS6110 restriction fragment length polymorphism (RFLP) suffers from the difficulty of comparing data between independent laboratories. Here, we propose a high-resolution typing method based on variable number tandem repeats (VNTRs) of genetic elements named mycobacterial interspersed repetitive units (MIRUs) in 12 human minisatellite-like regions of the M. tuberculosis genome. MIRU-VNTR profiles of 72 different M. tuberculosis isolates were established by PCR analysis of all 12 loci. From 2 to 8 MIRU-VNTR alleles were identified in the 12 regions in these strains, which corresponds to a potential of over 16 million different combinations, yielding a resolution power close to that of IS6110-RFLP. All epidemiologically related isolates tested were perfectly clustered by MIRU-VNTR typing, indicating that the stability of these MIRU-VNTRs is adequate to track outbreak episodes. The correlation between genetic relationships inferred from MIRU-VNTR and IS6110-RFLP typing was highly significant. Compared with IS6110-RFLP, high-resolution MIRU-VNTR typing has the considerable advantages of being fast, appropriate for all M. tuberculosis isolates, including strains that have a few IS6110 copies, and permitting easy and rapid comparison of results from independent laboratories. This typing method opens the way to the construction of digital global databases for molecular epidemiology studies of M. tuberculosis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The discovery that the epsilon 4 allele of the apolipoprotein E (apoE) gene is a putative risk factor for Alzheimer disease (AD) in the general population has highlighted the role of genetic influences in this extremely common and disabling illness. It has long been recognized that another genetic abnormality, trisomy 21 (Down syndrome), is associated with early and severe development of AD neuropathological lesions. It remains a challenge, however, to understand how these facts relate to the pathological changes in the brains of AD patients. We used computerized image analysis to examine the size distribution of one of the characteristic neuropathological lesions in AD, deposits of A beta peptide in senile plaques (SPs). Surprisingly, we find that a log-normal distribution fits the SP size distribution quite well, motivating a porous model of SP morphogenesis. We then analyzed SP size distribution curves in genotypically defined subgroups of AD patients. The data demonstrate that both apoE epsilon 4/AD and trisomy 21/AD lead to increased amyloid deposition, but by apparently different mechanisms. The size distribution curve is shifted toward larger plaques in trisomy 21/AD, probably reflecting increased A beta production. In apoE epsilon 4/AD, the size distribution is unchanged but the number of SP is increased compared to apoE epsilon 3, suggesting increased probability of SP initiation. These results demonstrate that subgroups of AD patients defined on the basis of molecular characteristics have quantitatively different neuropathological phenotypes.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the first part of this study human immunodeficiency virus type 1 (HIV-1) proviral DNA sequences derived from 201 clones of the C2-V3 env region and the first exon of the tat gene were obtained from six MV-1 infected heterosexual couples. These molecular data were used to confirm the epidemiological relationships. The ability of the molecular data to draw such conclusions was also tested with multiple phylogenetic analyses. The tat region was much more useful in establishing epidemiological relationships than the commonly used C2-V3.^ Subsequently, using nucleotide sequences from the first exon of the Tat gene, we tested the hypothesis that a Florida dentist (a common source) infected five of his patients in the course of dental procedures, against the null hypothesis that the dentist and each individual of the dental group independently acquired the virus within the local community. Multiple phylogenetic analyses demonstrated that the sequences of the five patients were significantly more related to each other than to sequences of the controls. Our results using Tat sequences, combined with envelope sequence data, strongly support a common phylogenetic epidemiological relationship among these five patients.^ A third study is presented, which deals with the effects of genomic variations in drug resistance. HIV-1 reverse transcriptase (RT) mutations were detected in DNA from peripheral blood mononuclear cells from 11 of 12 HIV-infected children after 11-20 months of zidovudine monotherapy. The codon 41/215 mutant combination was associated with general decline in health status. Patients developing the codon 70 mutation tended to have a better health status. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Human papillomavirus (HPV) causes cervical cancer and external genital warts. The purpose of this study is to document the genotype distribution of HPV in females aged between 18 and 34 who self-referred to an STI clinic with visible external genital warts (EGW). Scrapings were taken from visible external genital warts (EGW). These scrapings were analysed by PCR for the presence of HPV DNA. Positive samples were then genotyped by means of a commercially available assay (LiPA). A comparison of genotyping results determined by the LiPA assay and direct amplicon DNA sequencing was also performed. Results: Ninety-two patients out of 105 samples (88%) had detectable levels of HPV DNA. The majority of individuals with EGW (66%) showed the presence of two or more genotypes. The most common HPV genotypes present in the study population were HPV-6, HPV-11, HPV-16, HPV-18, HPV-33 and HPV-53. Potential effects of vaccination on HPV molecular epidemiology indicate that 40% of the patients could have been protected from the high risk genotypes HPV-16 and HPV-18.Conclusion: This is the first report of the molecular epidemiology of external genital warts in women aged between 18 and 34 from Ireland based on results from a LiPA assay. The study shows that most individuals are infected with multiple genotypes including those with high oncogenic potential and that the newly available HPV vaccines could have a significant impact on prevalence of the most common HPV genotypes in this study population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This review outlines current international patterns in prostate cancer incidence and mortality rates and survival, including recent trends and a discussion of the possible impact of prostate-specific antigen (PSA) testing on the observed data. Internationally, prostate cancer is the second most common cancer diagnosed among men (behind lung cancer), and is the sixth most common cause of cancer death among men. Prostate cancer is particularly prevalent in developed countries such as the United States and the Scandinavian countries, with about a six-fold difference between high-incidence and low-incidence countries. Interpretation of trends in incidence and survival are complicated by the increasing impact of PSA testing, particularly in more developed countries. As Western influences become more pronounced in less developed countries, prostate cancer incidence rates in those countries are tending to increase, even though the prevalence of PSA testing is relatively low. Larger proportions of younger men are being diagnosed with prostate cancer and living longer following diagnosis of prostate cancer, which has many implications for health systems. Decreasing mortality rates are becoming widespread among more developed countries, although it is not clear whether this is due to earlier diagnosis (PSA testing), improved treatment, or some combination of these or other factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Chlamydia pecorum is an obligate intracellular bacterium and the causative agent of reproductive and ocular disease in several animal hosts including koalas, sheep, cattle and goats. C. pecorum strains detected in koalas are genetically diverse, raising interesting questions about the origin and transmission of this species within koala hosts. While the ompA gene remains the most widely-used target in C. pecorum typing studies, it is generally recognised that surface protein encoding genes are not suited for phylogenetic analysis and it is becoming increasingly apparent that the ompA gene locus is not congruent with the phylogeny of the C. pecorum genome. Using the recently sequenced C. pecorum genome sequence (E58), we analysed 10 genes, including ompA, to evaluate the use of ompA as a molecular marker in the study of koala C. pecorum genetic diversity. Results Three genes (incA, ORF663, tarP) were found to contain sufficient nucleotide diversity and discriminatory power for detailed analysis and were used, with ompA, to genotype 24 C. pecorum PCR-positive koala samples from four populations. The most robust representation of the phylogeny of these samples was achieved through concatenation of all four gene sequences, enabling the recreation of a "true" phylogenetic signal. OmpA and incA were of limited value as fine-detailed genetic markers as they were unable to confer accurate phylogenetic distinctions between samples. On the other hand, the tarP and ORF663 genes were identified as useful "neutral" and "contingency" markers respectively, to represent the broad evolutionary history and intra-species genetic diversity of koala C. pecorum. Furthermore, the concatenation of ompA, incA and ORF663 sequences highlighted the monophyletic nature of koala C. pecorum infections by demonstrating a single evolutionary trajectory for koala hosts that is distinct from that seen in non-koala hosts. Conclusions While the continued use of ompA as a fine-detailed molecular marker for epidemiological analysis appears justified, the tarP and ORF663 genes also appear to be valuable markers of phylogenetic or biogeographic divisions at the C. pecorum intra-species level. This research has significant implications for future typing studies to understand the phylogeny, genetic diversity, and epidemiology of C. pecorum infections in the koala and other animal species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background The epidemiology of dengue in the South Pacific has been characterized by transmission of a single dominant serotype for 3–5 years, with subsequent replacement by another serotype. From 2001 to 2008 only DENV-1 was reported in the Pacific. In 2008, DENV-4 emerged and quickly displaced DENV-1 in the Pacific, except in New Caledonia (NC) where DENV-1 and DENV-4 co-circulated in 2008–2009. During 2012–2013, another DENV-1 outbreak occurred in NC, the third DENV-1 outbreak in a decade. Given that dengue is a serotype-specific immunizing infection, the recurrent outbreaks of a single serotype within a 10-year period was unexpected. Findings This study aimed to inform this phenomenon by examining the phylogenetic characteristics of the DENV-1 viruses in NC and other Pacific islands between 2001 and 2013. As a result, we have demonstrated that NC experienced introductions of viruses from both the Pacific (genotype IV) and South-east Asia (genotype I). Moreover, whereas genotype IV and I were co-circulating at the beginning of 2012, we observed that from the second half of 2012, i.e. during the major DENV-1 outbreak, all analyzed viruses were genotype I suggesting that a genotype switch occurred. Conclusions Repeated outbreaks of the same dengue serotype, as observed in NC, is uncommon in the Pacific islands. Why the earlier DENV-1 outbreaks did not induce sufficient herd immunity is unclear, and likely multifactorial, but the robust vector control program may have played a role by limiting transmission and thus maintaining a large susceptible pool in the population. Keywords: Dengue; Phylogeny; Genotype; Epidemics; New Caledonia