857 resultados para Environments with time-varying ocean currents
Resumo:
Applied econometricians often fail to impose economic regularity constraints in the exact form economic theory prescribes. We show how the Singular Value Decomposition (SVD) Theorem and Markov Chain Monte Carlo (MCMC) methods can be used to rigorously impose time- and firm-varying equality and inequality constraints. To illustrate the technique we estimate a system of translog input demand functions subject to all the constraints implied by economic theory, including observation-varying symmetry and concavity constraints. Results are presented in the form of characteristics of the estimated posterior distributions of functions of the parameters. Copyright (C) 2001 John Wiley Sons, Ltd.
Resumo:
Forecasting category or industry sales is a vital component of a company's planning and control activities. Sales for most mature durable product categories are dominated by replacement purchases. Previous sales models which explicitly incorporate a component of sales due to replacement assume there is an age distribution for replacements of existing units which remains constant over time. However, there is evidence that changes in factors such as product reliability/durability, price, repair costs, scrapping values, styling and economic conditions will result in changes in the mean replacement age of units. This paper develops a model for such time-varying replacement behaviour and empirically tests it in the Australian automotive industry. Both longitudinal census data and the empirical analysis of the replacement sales model confirm that there has been a substantial increase in the average aggregate replacement age for motor vehicles over the past 20 years. Further, much of this variation could be explained by real price increases and a linear temporal trend. Consequently, the time-varying model significantly outperformed previous models both in terms of fitting and forecasting the sales data. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
Cluster scheduling and collision avoidance are crucial issues in large-scale cluster-tree Wireless Sensor Networks (WSNs). The paper presents a methodology that provides a Time Division Cluster Scheduling (TDCS) mechanism based on the cyclic extension of RCPS/TC (Resource Constrained Project Scheduling with Temporal Constraints) problem for a cluster-tree WSN, assuming bounded communication errors. The objective is to meet all end-to-end deadlines of a predefined set of time-bounded data flows while minimizing the energy consumption of the nodes by setting the TDCS period as long as possible. Sinceeach cluster is active only once during the period, the end-to-end delay of a given flow may span over several periods when there are the flows with opposite direction. The scheduling tool enables system designers to efficiently configure all required parameters of the IEEE 802.15.4/ZigBee beaconenabled cluster-tree WSNs in the network design time. The performance evaluation of thescheduling tool shows that the problems with dozens of nodes can be solved while using optimal solvers.
Resumo:
The simulation analysis is important approach to developing and evaluating the systems in terms of development time and cost. This paper demonstrates the application of Time Division Cluster Scheduling (TDCS) tool for the configuration of IEEE 802.15.4/ZigBee beaconenabled cluster-tree WSNs using the simulation analysis, as an illustrative example that confirms the practical applicability of the tool. The simulation study analyses how the number of retransmissions impacts the reliability of data transmission, the energy consumption of the nodes and the end-to-end communication delay, based on the simulation model that was implemented in the Opnet Modeler. The configuration parameters of the network are obtained directly from the TDCS tool. The simulation results show that the number of retransmissions impacts the reliability, the energy consumption and the end-to-end delay, in a way that improving the one may degrade the others.
Resumo:
Proceedings of the Information Technology Applications in Biomedicine, Ioannina - Epirus, Greece, October 26-28, 2006
Resumo:
Data Mining (DM) methods are being increasingly used in prediction with time series data, in addition to traditional statistical approaches. This paper presents a literature review of the use of DM with time series data, focusing on short- time stocks prediction. This is an area that has been attracting a great deal of attention from researchers in the field. The main contribution of this paper is to provide an outline of the use of DM with time series data, using mainly examples related with short-term stocks prediction. This is important to a better understanding of the field. Some of the main trends and open issues will also be introduced.
Resumo:
Economic activities, both on the macro and micro level, often entail wide-spread externalities. This in turn leads to disputes regarding the compensation levels to the various parties affected. We propose a general, yet simple, method of deciding upon the distribution of the gains (costs) of cooperation in the presence of externalities. This method is shown to be the unique one satisfying several desirable properties. Furthermore, we illustrate the use of this method to resolve the sharing of benefits generated by international climate control agreements.
Resumo:
This paper investigates the usefulness of switching Gaussian state space models as a tool for implementing dynamic model selecting (DMS) or averaging (DMA) in time-varying parameter regression models. DMS methods allow for model switching, where a different model can be chosen at each point in time. Thus, they allow for the explanatory variables in the time-varying parameter regression model to change over time. DMA will carry out model averaging in a time-varying manner. We compare our exact approach to DMA/DMS to a popular existing procedure which relies on the use of forgetting factor approximations. In an application, we use DMS to select different predictors in an in ation forecasting application. We also compare different ways of implementing DMA/DMS and investigate whether they lead to similar results.
Resumo:
We use a dynamic multipath general-to-specific algorithm to capture structural instability in the link between euro area sovereign bond yield spreads against Germany and their underlying determinants over the period January 1999 – August 2011. We offer new evidence suggesting a significant heterogeneity across countries, both in terms of the risk factors determining spreads over time as well as in terms of the magnitude of their impact on spreads. Our findings suggest that the relationship between euro area sovereign risk and the underlying fundamentals is strongly timevarying, turning from inactive to active since the onset of the global financial crisis and further intensifying during the sovereign debt crisis. As a general rule, the set of financial and macro spreads’ determinants in the euro area is rather unstable but generally becomes richer and stronger in significance as the crisis evolves.
Resumo:
Time varying parameter (TVP) models have enjoyed an increasing popularity in empirical macroeconomics. However, TVP models are parameter-rich and risk over-fitting unless the dimension of the model is small. Motivated by this worry, this paper proposes several Time Varying dimension (TVD) models where the dimension of the model can change over time, allowing for the model to automatically choose a more parsimonious TVP representation, or to switch between different parsimonious representations. Our TVD models all fall in the category of dynamic mixture models. We discuss the properties of these models and present methods for Bayesian inference. An application involving US inflation forecasting illustrates and compares the different TVD models. We find our TVD approaches exhibit better forecasting performance than several standard benchmarks and shrink towards parsimonious specifications.
Resumo:
In this paper the two main drawbacks of the heat balance integral methods are examined. Firstly we investigate the choice of approximating function. For a standard polynomial form it is shown that combining the Heat Balance and Refined Integral methods to determine the power of the highest order term will either lead to the same, or more often, greatly improved accuracy on standard methods. Secondly we examine thermal problems with a time-dependent boundary condition. In doing so we develop a logarithmic approximating function. This new function allows us to model moving peaks in the temperature profile, a feature that previous heat balance methods cannot capture. If the boundary temperature varies so that at some time t & 0 it equals the far-field temperature, then standard methods predict that the temperature is everywhere at this constant value. The new method predicts the correct behaviour. It is also shown that this function provides even more accurate results, when coupled with the new CIM, than the polynomial profile. Analysis primarily focuses on a specified constant boundary temperature and is then extended to constant flux, Newton cooling and time dependent boundary conditions.
Resumo:
In this paper, we introduce a pilot-aided multipath channel estimator for Multiple-Input Multiple-Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) systems. Typical estimation algorithms assume the number of multipath components and delays to be known and constant, while theiramplitudes may vary in time. In this work, we focus on the more realistic assumption that also the number of channel taps is unknown and time-varying. The estimation problem arising from this assumption is solved using Random Set Theory (RST), which is a probability theory of finite sets. Due to the lack of a closed form of the optimal filter, a Rao-Blackwellized Particle Filter (RBPF) implementation of the channel estimator is derived. Simulation results demonstrate the estimator effectiveness.
Resumo:
The standard one-machine scheduling problem consists in schedulinga set of jobs in one machine which can handle only one job at atime, minimizing the maximum lateness. Each job is available forprocessing at its release date, requires a known processing timeand after finishing the processing, it is delivery after a certaintime. There also can exists precedence constraints between pairsof jobs, requiring that the first jobs must be completed beforethe second job can start. An extension of this problem consistsin assigning a time interval between the processing of the jobsassociated with the precedence constrains, known by finish-starttime-lags. In presence of this constraints, the problem is NP-hardeven if preemption is allowed. In this work, we consider a specialcase of the one-machine preemption scheduling problem with time-lags, where the time-lags have a chain form, and propose apolynomial algorithm to solve it. The algorithm consist in apolynomial number of calls of the preemption version of the LongestTail Heuristic. One of the applicability of the method is to obtainlower bounds for NP-hard one-machine and job-shop schedulingproblems. We present some computational results of thisapplication, followed by some conclusions.
Resumo:
Purpose: To describe the evolution of retinal thickness in eyes affected with acute anterior uveitis (AAU) in the course of follow-up and to assess its correlation with severity of inflammatory activity in the anterior chamber. Methods: Design: Prospective, cohort study Setting: Institutional study Patient population: 72 eyes (affected and fellow eyes) of 36 patients Observation procedure: Patients were followed daily until beginning of resolution of inflammatory activity and weekly thereafter. Optical coherence tomography and laser flare photometry were performed at each visit. Treatment consisted of topical corticosteroids Main outcome measures: Retinal thickness of affected eyes, difference in retinal thickness between affected and fellow eyes and their evolution in time, association between maximal retinal thickness and initial laser flare photometry. Results: Difference in retinal thickness between affected and fellow eyes became significant on average seven days from baseline and remained so through-out follow-up (p<0.001). There was a steep increase in retinal thickness of affected eyes followed by a progressive decrease after reaching a peak value. Maximal difference in retinal thickness between affected and fellow eyes was observed between 17 and 25 days from baseline and exhibited a strong, positive correlation with initial laser flare photometry values (p=0.015). Conclusions: Retinal thickness in eyes affected with AAU presents a steep increase over 3 to 4 weeks and then gradually decreases. Severity of inflammation at baseline predicts the amount of retinal thickening in affected eyes. A characteristic pattern of temporal response of retinal anatomy to inflammatory stimuli seems to arise.
Resumo:
Due to the difficulty of estimating water percolation in unsaturated soils, the purpose of this study was to estimate water percolation based on time-domain reflectometry (TDR). In two drainage lysimeters with different soil textures TDR probes were installed, forming a water monitoring system consisting of different numbers of probes. The soils were saturated and covered with plastic to prevent evaporation. Tests of internal drainage were carried out using a TDR 100 unit with constant dielectric readings (every 15 min). To test the consistency of TDR-estimated percolation levels in comparison with the observed leachate levels in the drainage lysimeters, the combined null hypothesis was tested at 5 % probability. A higher number of probes in the water monitoring system resulted in an approximation of the percolation levels estimated from TDR - based moisture data to the levels measured by lysimeters. The definition of the number of probes required for water monitoring to estimate water percolation by TDR depends on the soil physical properties. For sandy clay soils, three batteries with four probes installed at depths of 0.20, 0.40, 0.60, and 0.80 m, at a distance of 0.20, 0.40 and 0.6 m from the center of lysimeters were sufficient to estimate percolation levels equivalent to the observed. In the sandy loam soils, the observed and predicted percolation levels were not equivalent even when using four batteries with four probes each, at depths of 0.20, 0.40, 0.60, and 0.80 m.