900 resultados para Environmental influence on memory formation
Resumo:
Background: Previous studies have reported errors in Activities of Daily Living (ADL) under the presence of distracting objects in dementia and brain injury patients. However, little is known about which distractor-target objects relation might be more harmful for performance. Method: We compared the ADL execution in frontal brain injured patients and control participants under two conditions: One in which target objects were mixed with distractor objects that constituted an alternative semantically related but non-required task (contextual condition) and another in which target objects were mixed with related but isolated distractors that did not constituted a coherent task (non-contextual condition). We separately analyzed ADL commission errors (repetitions, substitutions, objects manipulations, failures in sequence, extra actions) and omissions. In addition, the participants were evaluated with a neuropsychological protocol including a very specific executive functions task (Selective attention, Stimulus-Stimulus and Stimulus-Response conflict). Results: We found that frontal patients produced more commission errors compared to control participants, but only under the contextual condition. No between groups significant differences were found in omissions in both conditions or commission errors in non-contextual conditions. Scores in the Stimulus-Response conflict was significantly correlated with commission errors in the contextual condition. Conclusion: The presence of different non-target objects in ADL performance could require different cognitive process. Contextual ADL conditions required a higher level of executive functions, especially at the level of response (Stimulus-Response conflict). Application to Practice: Occupational therapists should control the presence of objects related to the target task according to the intervention objectives with the patients.
Resumo:
Epilithic biofilm on rocky shores is regulated by physico-chemical and biological factors and is important as a source of food for benthic organisms. The influences of environmental and grazing pressure on spatial variability of biomass of biofilm were evaluated on shores on the north coast of São Paulo State (SE Brazil). A general trend of greater abundance of microalgae was observed lower on the shore, but neither of the environmental factors evaluated (wave exposure and shore level) showed consistent effects, and differences were found among specific shores or times (September 2007 and March 2008). The abundance of slow-moving grazers (limpets and littorinids) showed a negative correlation with chlorophyll a concentration on shores. However, experimental exclusion of these grazers failed to show consistent results at small spatial scales. Observations of divergent abundances of the isopod Ligia exotica and biomass of biofilm on isolated boulders on shores led to a short exclusion experiment, where the grazing pressure by L. exotica significantly decreased microalgal biomass. The result suggests that grazing activities of this fast-moving consumer probably mask the influence of slow-moving grazers at small spatial scales, while both have an additive effect at larger scales that masks environmental influences. This is the first evaluation of the impact of the fast-moving herbivore L. exotica on microalgal biomass on rocky shores and opens an interesting discussion about the role of these organisms in subtropical coastal environments.
Resumo:
Laboratory chamber experiments are used to investigate formation of secondary organic aerosol (SOA) from biogenic and anthropogenic precursors under a variety of environmental conditions. Simulations of these experiments test our understanding of the prevailing chemistry of SOA formation as well as the dynamic processes occurring in the chamber itself. One dynamic process occurring in the chamber that was only recently recognized is the deposition of vapor species to the Teflon walls of the chamber. Low-volatility products formed from the oxidation of volatile organic compounds (VOCs) deposit on the walls rather than forming SOA, decreasing the amount of SOA formed (quantified as the SOA yield: mass of SOA formed per mass of VOC reacted). In this work, several modeling studies are presented that address the effect of vapor wall deposition on SOA formation in chambers.
A coupled vapor-particle dynamics model is used to examine the competition among the rates of gas-phase oxidation to low volatility products, wall deposition of these products, and mass transfer to the particle phase. The relative time scales of these rates control the amount of SOA formed by affecting the influence of vapor wall deposition. Simulations show that an effect on SOA yield of changing the vapor-particle mass transfer rate is only observed when SOA formation is kinetically limited. For systems with kinetically limited SOA formation, increasing the rate of vapor-particle mass transfer by increasing the concentration of seed particles is an effective way to minimize the effect of vapor wall deposition.
This coupled vapor-particle dynamics model is then applied to α-pinene ozonolysis SOA experiments. Experiments show that the SOA yield is affected when changing the oxidation rate but not when changing the rate of gas-particle mass transfer by changing the concentration of seed particles. Model simulations show that the absence of an effect of changing the seed particle concentration is consistent with SOA formation being governed by quasi-equilibrium growth, in which gas-particle equilibrium is established much faster than the rate of change of the gas-phase concentration. The observed effect of oxidation rate on SOA yield arises due to the presence of vapor wall deposition: gas-phase oxidation products are produced more quickly and condense preferentially onto seed particles before being lost to the walls. Therefore, for α-pinene ozonolysis, increasing the oxidation rate is the most effective way to mitigate the influence of vapor wall deposition.
Finally, the detailed model GECKO-A (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere) is used to simulate α-pinene photooxidation SOA experiments. Unexpectedly, α-pinene OH oxidation experiments show no effect when changing either the oxidation rate or the vapor-particle mass transfer rate, whereas GECKO-A predicts that changing the oxidation rate should drastically affect the SOA yield. Sensitivity studies show that the assumed magnitude of the vapor wall deposition rate can greatly affect conclusions drawn from comparisons between simulations and experiments. If vapor wall loss in the Caltech chamber is of order 10-5 s-1, GECKO-A greatly overpredicts SOA during high UV experiments, likely due to an overprediction of second-generation products. However, if instead vapor wall loss in the Caltech chamber is of order 10-3 s-1, GECKO-A greatly underpredicts SOA during low UV experiments, possibly due to missing autoxidation pathways in the α-pinene mechanism.
Resumo:
Since the discovery of Nb(3)Sn superconductors many efforts have been expended to improve the transport properties in these materials. In this work, the heat treatment profiles for Nb(3)Sn superconductor wires with Cu(Sn) artificial pinning centers (APCs) with nanometric-scale sizes were analyzed in an attempt to improve the critical current densities and upper critical magnetic field. The methodology to optimize the heat treatment profiles in respect to the diffusion, reaction and formation of the superconducting phases is described. Microstructural characterization, transport and magnetic measurements were performed in an attempt to relate the microstructure to the pinning mechanisms acting in the samples. It was concluded that the maximum current densities occur due to normal phases (APCs) that act as the main pinning centers in the global behavior of the Nb(3)Sn superconducting wire. The APC technique was shown to be very powerful because it permitted mixing of the pinning mechanism. This achievement was not possible in other studies in Nb(3)Sn wires reported up to now.
Resumo:
A new conceptual framework has been developed which explains the formation of shear-related casting defects such as porosity, segregation and tears. The theory relates defect formation to the mechanical behaviour of the partially solidified microstructure when shear stresses are developed during the filling of a casting and by the subsequent feeding processes during solidification. Two transition points, the dendrite coherency point and the maximum packing solid fraction, divide the mushy zone into three regions of different mechanical and feeding behaviours. The response of the mush to shear is related to the presence of these zones during solidification of a casting. The resulting defects are rationalized by considering the governing local shear stress and shear rate, local strength and time available for fluid flow. The design of the casting, the casting process used and the alloy composition all influence the relative importance of shearing on defect formation. (C) 1998 Acta Metallurgica Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Rock bolt stress corrosion cracking (SCC) has been investigated using the linearly increasing stress test (LIST). One series of experiments determined the threshold stress of various bolt metallurgies (900 MPa for 1355AXRC, and 800 MPa for MAC and MA840B steels). The high values of threshold stress suggest that SCC begins in rock bolts when they are sheared by moving rock strata. SCC only occurred for environmental conditions which produce hydrogen on the sample surface, leading to hydrogen embrittlement and SCC. Different threshold potentials were determined for a range of metallurgies. Cold work was shown to increase the resistance of the steel to SCC. Rock bolt rib geometry does not have a direct impact on the SCC resistance properties of the bolt, although the process by which the ribs are produced can introduce tensile stresses into the bolt which lower its resistance to SCC. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The P3(00) event-related potential (ERP) component is widely used as a measure of cognitive functioning and provides a sensitive electrophysiological index of the attentional and working memory demands of a task. This study investigated what proportion of the variance in the amplitude and latency of the P3, elicited in a delayed response working memory task, could be attributed to genetic factors. In 335 adolescent twin pairs and 48 siblings, the amplitude and latency of the P3 were examined at frontal, central, and parietal sites. Additive genetic factors accounted for 48% to 61% of the variance in P3 amplitude. Approximately one-third of the genetic variation at frontal sites was mediated by a common genetic factor that also influenced the genetic variation at parietal and central sites. Familial resemblance in P3 latency was due to genetic influence that accounted for 44% to 50% of the variance. Genetic covariance in P3 latency across sites was substantial, with a large part of the variance found at parietal, central, and frontal sites attributed to a common genetic factor. The findings provide further evidence that the P3 is a promising phenotype of neural activity of the brain and has the potential to be used in linkage and association analysis in the search for quantitative trait loci (QTLs) influencing cognition.
Resumo:
Objective: To test a conceptual model linking parental physical activity orientations, parental support for physical activity, and children's self-efficacy perceptions with physical activity participation. Participants and Setting: The sample consisted of 380 students in grades 7 through 12 (mean age, 14.0 +/- 1.6 years) and their parents. Data collection took place during the fall of 1996. Main Outcome Measures: Parents completed a questionnaire assessing their physical activity habits, enjoyment of physical activity, beliefs regarding the importance of physical activity, and supportive behaviors for their child's physical activity. Students completed a 46-item inventory assessing physical activity during the previous 7 days and a 5-item physical activity self-efficacy scale. The model was tested via observed variable path analysis using structural equation modeling techniques (AMOS 4.0). Results: An initial model, in which parent physical activity orientations predicted child physical activity via parental support and child self-efficacy, did not provide an acceptable fit to the data. Inclusion of a direct path from parental support to child physical activity and deletion of a nonsignificant path from parental physical activity to child physical activity significantly improved model fit. Standardized path coefficients for the revised model ranged from 0.17 to 0.24, and all were significant at the p < 0.0001 level. Conclusions: Parental support was an important correlate of youth physical activity, acting directly or indirectly through its influence on self-efficacy. Physical activity interventions targeted at youth should include and evaluate the efficacy of individual-level and community-level strategies to increase parents' capacity to provide instrumental and motivational support for their children's physical activity.
Resumo:
One Plus Sequential Air Sampler—Partisol was placed in a small village (Foros de Arrão) in central Portugal to collect PM10 (particles with an aerodynamic diameter below 10 μm), during the winter period for 3 months (December 2009–March 2010). Particles masses were gravimetrically determined and the filters were analyzed by instrumental neutron activation analysis to assess their chemical composition. The water-soluble ion compositions of the collected particles were determined by Ion-exchange Chromatography. Principal component analysis was applied to the data set of chemical elements and soluble ions to assess the main sources of the air pollutants. The use of both analytical techniques provided information about elemental solubility, such as for potassium, which was important to differentiate sources.
Low temperature structural transitions in dipolar hard spheres: the influence on magnetic properties
Resumo:
We investigate the structural chain-to-ring transition at low temperature in a gas of dipolar hard spheres (DRS). Due to the weakening of entropic contribution, ring formation becomes noticeable when the effective dipole-dipole magnetic interaction increases, It results in the redistribution of particles from usually observed flexible chains into flexible rings. The concentration (rho) of DI-IS plays a crucial part in this transition: at a very low rho only chains and rings are observed, whereas even a slight increase of the volume fraction leads to the formation of branched or defect structures. As a result, the fraction of DHS aggregated in defect-free rings turns out to be a non-monotonic function of rho. The average ring size is found to be a slower increasing function of rho when compared Lo that of chains. Both theory and computer simulations confirm the dramatic influence of the ring formation on the rho-dependence of the initial magnetic susceptibility (chi) when the temperature decreases. The rings clue to their zero total dipole moment are irresponsive to a weak magnetic field and drive to the strong decrease of the initial magnetic susceptibility. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Considering the fundamental importance of preserving the built heritage and of ensuring the good performance achieved by incorporating ceramic particles in lime mortars in ancient times, it is important to study solutions that use materials the available today, in order to produce mortars intended to repair and replace the old ones. Solutions incorporating industrial ceramic waste might be profitable for several reasons, namely for economic, environmental and technical aspects. In this paper, seven ceramic waste products collected from ceramics factories are characterized. Their mineralogy, dimensional features and pozzolanicity were determined. Three of these products, with different particle size fractions (obtained directly from milling, dust only and fragment fractions only), were selected, incorporated into air lime mortars, and their mechanical strength was determined. In the present work, evidence of mechanical efficiency, when common sand or air lime were partially replaced by ceramic wastes, was made clear, drawing attention to the sustainability of this type of mortars, hence, encouraging further research.
Resumo:
Introduction In my thesis I argue that economic policy is all about economics and politics. Consequently, analysing and understanding economic policy ideally has at least two parts. The economics part, which is centered around the expected impact of a specific policy on the real economy both in terms of efficiency and equity. The insights of this part point into which direction the fine-tuning of economic policies should go. However, fine-tuning of economic policies will be most likely subject to political constraints. That is why, in the politics part, a much better understanding can be gained by taking into account how the incentives of politicians and special interest groups as well as the role played by different institutional features affect the formation of economic policies. The first part and chapter of my thesis concentrates on the efficiency-related impact of economic policies: how does corporate income taxation in general, and corporate income tax progressivity in specific, affect the creation of new firms? Reduced progressivity and flat-rate taxes are in vogue. By 2009, 22 countries are operating flat-rate income tax systems, as do 7 US states and 14 Swiss cantons (for corporate income only). Tax reform proposals in the spirit of the "flat tax" model typically aim to reduce three parameters: the average tax burden, the progressivity of the tax schedule, and the complexity of the tax code. In joint work, Marius Brülhart and I explore the implications of changes in these three parameters on entrepreneurial activity, measured by counts of firm births in a panel of Swiss municipalities. Our results show that lower average tax rates and reduced complexity of the tax code promote firm births. Controlling for these effects, reduced progressivity inhibits firm births. Our reading of these results is that tax progressivity has an insurance effect that facilitates entrepreneurial risk taking. The positive effects of lower tax levels and reduced complexity are estimated to be significantly stronger than the negative effect of reduced progressivity. To the extent that firm births reflect desirable entrepreneurial dynamism, it is not the flattening of tax schedules that is key to successful tax reforms, but the lowering of average tax burdens and the simplification of tax codes. Flatness per se is of secondary importance and even appears to be detrimental to firm births. The second part of my thesis, which corresponds to the second and third chapter, concentrates on how economic policies are formed. By the nature of the analysis, these two chapters draw on a broader literature than the first chapter. Both economists and political scientists have done extensive research on how economic policies are formed. Thereby, researchers in both disciplines have recognised the importance of special interest groups trying to influence policy-making through various channels. In general, economists base their analysis on a formal and microeconomically founded approach, while abstracting from institutional details. In contrast, political scientists' frameworks are generally richer in terms of institutional features but lack the theoretical rigour of economists' approaches. I start from the economist's point of view. However, I try to borrow as much as possible from the findings of political science to gain a better understanding of how economic policies are formed in reality. In the second chapter, I take a theoretical approach and focus on the institutional policy framework to explore how interactions between different political institutions affect the outcome of trade policy in presence of special interest groups' lobbying. Standard political economy theory treats the government as a single institutional actor which sets tariffs by trading off social welfare against contributions from special interest groups seeking industry-specific protection from imports. However, these models lack important (institutional) features of reality. That is why, in my model, I split up the government into a legislative and executive branch which can both be lobbied by special interest groups. Furthermore, the legislative has the option to delegate its trade policy authority to the executive. I allow the executive to compensate the legislative in exchange for delegation. Despite ample anecdotal evidence, bargaining over delegation of trade policy authority has not yet been formally modelled in the literature. I show that delegation has an impact on policy formation in that it leads to lower equilibrium tariffs compared to a standard model without delegation. I also show that delegation will only take place if the lobby is not strong enough to prevent it. Furthermore, the option to delegate increases the bargaining power of the legislative at the expense of the lobbies. Therefore, the findings of this model can shed a light on why the U.S. Congress often practices delegation to the executive. In the final chapter of my thesis, my coauthor, Antonio Fidalgo, and I take a narrower approach and focus on the individual politician level of policy-making to explore how connections to private firms and networks within parliament affect individual politicians' decision-making. Theories in the spirit of the model of the second chapter show how campaign contributions from lobbies to politicians can influence economic policies. There exists an abundant empirical literature that analyses ties between firms and politicians based on campaign contributions. However, the evidence on the impact of campaign contributions is mixed, at best. In our paper, we analyse an alternative channel of influence in the shape of personal connections between politicians and firms through board membership. We identify a direct effect of board membership on individual politicians' voting behaviour and an indirect leverage effect when politicians with board connections influence non-connected peers. We assess the importance of these two effects using a vote in the Swiss parliament on a government bailout of the national airline, Swissair, in 2001, which serves as a natural experiment. We find that both the direct effect of connections to firms and the indirect leverage effect had a strong and positive impact on the probability that a politician supported the government bailout.
Resumo:
Because an enriched environment (EE) enhances T-cell activity and T-lymphocytes contribute to immunopathogenesis during heterologous dengue virus (DENV) infections, we hypothesised that an EE increases dengue severity. To compare single serotype (SS) and antibody-enhanced disease (AED) infections regimens, serial intraperitoneal were performed with DENV3 (genotype III) infected brain homogenate or anti-DENV2 hyperimmune serum followed 24 h later by DENV3 (genotype III) infected brain homogenate. Compared AED for which significant differences were detected between the EE and impoverished environmental (IE) groups (Kaplan-Meyer log-rank test, p = 0.0025), no significant differences were detected between the SS experimental groups (Kaplan-Meyer log-rank test, p = 0.089). Survival curves from EE and IE animals infected with the AED regimen were extended after corticoid injection and this effect was greater in the EE than in the IE group (Kaplan-Meyer log-rank test, p = 0.0162). Under the AED regimen the EE group showed more intense clinical signs than the IE group. Dyspnoea, tremor, hunched posture, ruffled fur, immobility, pre-terminal paralysis, shock and death were associated with dominant T-lymphocytic hyperplasia and presence of viral antigens in the liver and lungs. We propose that the increased expansion of these memory T-cells and serotype cross-reactive antibodies facilitates the infection of these cells by DENV and that these events correlate with disease severity in an EE.
Resumo:
Les changements environnementaux, tels la température ou les maladies infectieuses, peuvent influencer l'évolution en induisant de la sélection, mais ceci à la seule condition qu'il y ait assez de diversité génétique pour les traits en question ou pour l'expression plastique de ces traits. Au cours cette thèse, nous avons étudié l'effet de potentielles pressions environnementales sur différents phénotypes de trois représentants des sous familles des salmonidés: l'ombre commun (Thymallus thymallus; Thymallinae), la truite de rivière {Salmo trutta; Salmoninae) et le corégone Coregonus palaea (Coregoninae). Les salmonidés se prêtent particulièrement bien à ce type d'expériences car étant hautement sensibles aux conditions environnementales, ils montrent une large variabilité dans leurs traits morphologiques, comportementaux ainsi que d'histoire de vie, tout en bénéficiant d'un large intérêt général. Nous avons testé si le sexe de l'ombre commun pouvait être modifié par la température, ce qui pourrait ainsi expliquer un changement abrupte de sex ratio observé dans l'une des plus grandes populations de Suisse. Nous n'avons trouvé aucun indice permettant de conclure que la température puisse induire ce changement chez l'ombre commun ou chez la truite de rivière. De plus nous avons étudié la plasticité de développement ainsi que d'éclosion, et avons observé des différences entre familles ainsi qu'entre populations. Alors que ces différences comportementales entre populations suggéraient une adaptation aux conditions environnementales locales, cette prédiction n'a pas été confirmée par une expérience de transplantation réciproque d'embryons entre cinq rivières de la même région. Cette étude a montré que les embryons ne survivaient pas mieux dans leur rivière d'origine, indiquant donc une absence d'adaptation locale. Nous avons aussi montré que la mortalité embryonnaire était influencée autant par des "bons gènes" que par des "gènes compatibles", que la qualité des mâles pouvait être signalée par leur coloration, et que le fait d'élever des poissons dans une pisciculture pouvait aboutir a des relations contre-intuitives entre la coloration des mâles et la qualité de leur jeunes. Nos résultats contribuent ainsi à une meilleure compréhension de l'effet de diverses pressions environnementales sur la morphologie, le comportement ou les traits d'histoire de vie chez les salmonidés. - Environmental changes, such as changes in temperatures or infection levels, can induce selection and drive evolution if there is sufficient genetic variation for the traits or the plasticity in trait expression. In this thesis, we investigated the influence of potential environmental stressors on various phenotypes in representatives of the three salmonid subfamilies: the European grayling (Thymallus thymallus; Thymallinae), the brown trout (,Salmo trutta; Salmoninae), and the whitefish Coregonus palaea (Coregoninae). Salmonids are ideal study species, as they seem sensitive to changing environmental conditions, show considerable variability in morphological, behavioral, and life history traits, and are of broad public interest. We investigated whether temperature-induced sex reversal could explain the sex-ratio distortion found in one of Switzerland's largest grayling populations. We found no evidence of temperature-induced sex reversal in either graylings or brown trout. We also examined plasticity in embryo development and the timing of hatching. We found variation at the level of family and population. Although behavioral differences between populations suggested adaptation to local environmental conditions, no indications of local adaptation could be found in reciprocal transplant experiments carried out over five rivers in the same region. We also demonstrate that embryo development and viability is influenced by 'good genes' and 'compatible genes', that the genetic quality of sires can be signaled by their grey coloration, and that raising larvae in a hatchery environment can produce counter-intuitive relationships between male phenotypes and offspring viability. Our results contribute to the understanding of how changing environmental conditions affect the phenotypes and the heritability of early life-history traits in salmonids.
Resumo:
Bisphosphonates are known for their strong inhibitory effect on bone resorption. Their influence on bone formation however is less clear. In this study we investigated the spatio-temporal effect of locally delivered Zoledronate on peri-implant bone formation and resorption in an ovariectomized rat femoral model. A cross-linked hyaluronic acid hydrogel was loaded with the drug and applied bilaterally in predrilled holes before inserting polymer screws. Static and dynamic bone parameters were analyzed based on in vivo microCT scans performed first weekly and then biweekly. The results showed that the locally released Zoledronate boosted bone formation rate up to 100% during the first 17 days after implantation and reduced the bone resorption rate up to 1000% later on. This shift in bone remodeling resulted in an increase in bone volume fraction (BV/TV) by 300% close to the screw and 100% further away. The double effect on bone formation and resorption indicates a great potential of Zoledronate-loaded hydrogel for enhancement of peri-implant bone volume which is directly linked to improved implant fixation.