972 resultados para Enthalpy Of Gelatinisation


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Shock-Boundary Layer Interaction (SBLI) often occurs in supersonic/hypersonic flow fields. Especially when accompanied by separation (termed strong interaction), the SBLI phenomena largely affect the performance of the systems where they occur, such as scramjet intakes, thus often demanding the control of the interaction. Experiments on the strong interaction between impinging shock wave and boundary layer on a flat plate at Mach 5.96 are carried out in IISc hypersonic shock tunnel HST-2. The experiments are performed at moderate flow total enthalpy of 1.3 MJ/kg and freestream Reynolds number of 4 million/m. The strong shock generated by a wedge (or shock generator) of large angle 30.96 degrees to the freestream is made to impinge on the flat plate at 95 mm (inviscid estimate) from the leading edge, due to which a large separation bubble of length (75 mm) comparable to the distance of shock impingement from the leading edge is generated. The experimental simulation of such large separation bubble with separation occurring close to the leading edge, and its control using boundary layer bleed (suction and tangential blowing) at the location of separation, are demonstrated within the short test time of the shock tunnel (similar to 600 mu s) from time resolved schlieren flow visualizations and surface pressure measurements. By means of suction - with mass flow rate one order less than the mass flow defect in boundary layer - a reduction in separation length by 13.33% was observed. By the injection of an array of (nearly) tangential jets in the direction of mainstream (from the bottom of the plate) at the location of separation - with momentum flow rate one order less than the boundary layer momentum flow defect - 20% reduction in separation length was observed, although the flow field was apparently unsteady. (C) 2014 Elsevier Masson SAS. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Innovative bi-electrolyte solid-state cells incorporating single crystal CaF2 and composition-graded solid electrolyte (LaF3) y (CaF2) 1-y (y = 0 to 0.32) were used for measurement of the standard Gibbs energy of formation of hexagonal La0.885Al11.782O19 and cubic LaAlO3 from component binary oxides La2O3 and alpha-Al2O3 in the temperature range from 875 to 1175 K. The cells were designed based on experimentally verified relevant phase relations in the systems La2O3-Al2O3LaF3 and CaF2-LaF3. The results can be summarized as: 5.891 alpha-Al2O3 + 0.4425 La2O3 (A-rare earth)-> La0.885Al11.782O19 (hex), Delta G(f(ox))(degrees)(+/- 2005)/Jmol(-1) = -80982 + 7.313(T/K); 1/2 La2O3 (A-rare earth) + 1/2 a-Al2O3 -> LaAlO3 (cubic), Delta G(f(ox))(degrees)(+/- 2100)/Jmol(-1) = -59810 + 4.51(T/K). Electron probe microanalysis was used to ascertain the non-stoichiometric range of the hexaaluminate phase. The results are critically analyzed in the light of earlier electrochemical measurements. Several imperfections in the electrochemical cells used by former investigators are identified. Data obtained in the study for LaAlO3 are consistent with calorimetric enthalpy of formation and entropy derived from heat capacity data. Estimated are the standard entropy and the standard enthalpy of formation from elements of hexagonal La0.885Al11.782O19 and rhombohedral LaAlO3 at 298.15 K. c 2014 The Electrochemical Society. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We show that the hybrids of single-layer graphene oxide with manganese ferrite magnetic nanoparticles have the best adsorption properties for efficient removal of Pb(II), As(III), and As(V) from contaminated water. The nanohybrids prepared by coprecipitation technique were characterized using atomic force and scanning electron microscopies, Fourier transformed infrared spectroscopy, Raman spectroscopy, X-ray diffraction, and surface area measurements. Magnetic character of the nanohybrids was ascertained by a vibrating sample magnetometer. Batch experiments were carried out to quantify the adsorption kinetics and adsorption capacities of the nanohybrids and compared with the bare nanoparticles of MnFe2O4. The adsorption data from our experiments fit the Langmuir isotherm, yielding the maximum adsorption capacity higher than the reported values so far. Temperature-dependent adsorption studies have been done to estimate the free energy and enthalpy of adsorption. Reusability, ease of magnetic separation, high removal efficiency, high surface area, and fast kinetics make these nanohybrids very attractive candidates for low-cost adsorbents for the effective coremoval of heavy metals from contaminated water.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Oxygen potentials established by the equilibrium between three condensed phases, CaOss+CoOss+ Ca3Co2O6 and CoOss+Ca3Co2O6+Ca3CO3.93+O-alpha(9.36-delta), are measured as a function of temperature using solid-state electrochemical cells incorporating yttria-stabilized zirconia as the electrolyte and pure oxygen as the reference electrode. Cation non-stoichiometry and oxygen non-stoichiometry in Ca3Co3.93+alpha O9.36-delta are determined using different techniques under defined conditions. Decomposition temperatures and thermodynamic properties of Ca3Co2O6 and Ca3Co4O9.163 are calculated from the results. The standard entropy and enthalpy of formation of Ca3Co2O6 at 298.15 K are evaluated. Using thermodynamic data from this study and auxiliary information from the literature, phase diagram for the ternary system Ca-Co-O is computed. Isothermal sections at representative temperatures are displayed to demonstrate the evolution of phase relations with temperature. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present paper reports a new class of Co based superalloys that has gamma-gamma' microstructure and exhibits much lower density compared to other commercially available Co superalloys including Co-Al-W based alloys. The basic composition is Co-10Al-5Mo (at%) with addition of 2 at% Ta for stabilization of gamma' phase. The gamma-gamma' microstructure evolves through solutionising and aging treatment. Using first principles calculations, we observe that Ta plays a crucial role in stabilizing gamma' phase. By addition of Ta in the basic stoichiometric composition Co-3(Al, Mo), the enthalpy of formation (Delta H-f) of L1(2) structure (gamma' phase) becomes more negative in comparison to DO19 structure. The All of the L12 structure becomes further more negative by the occupancy of Ni and Ti atoms in the lattice suggesting an increase in the stability of the gamma' precipitates. Among large number of alloys studied experimentally, the paper presents results of detailed investigations on Co-10Al-5Mo-2Ta, Co-30Ni-10Al-5Mo-2Ta and Co-30Ni-10Al-5Mo-2Ta-2Ti. To evaluate the role alloying elements, atom probe tomography investigations were carried out to obtain partition coefficients for the constituent elements. The results show strong partitioning of Ni, Al, Ta and Ti in ordered gamma' precipitates. 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The majority of attempts to synthesize the theoretically predicted superhard phase β-C3N4 have been driven towards the use of techniques which maximize both the carbon sp3 levels and the amount of nitrogen incorporated within the film. However, as yet no attempt has been made to understand the mechanism behind the resultant chemical sputter process and its obvious effect upon film growth. In this work, however, the chemical sputtering process has been investigated through the use of an as-deposited tetrahedrally bonded amorphous carbon film with a high density nitrogen plasma produced using an rf-based electron cyclotron wave resonance source. The results obtained suggested the presence of two distinct ion energy dependent regimes. The first, below 100 eV, involves the chemical sputtering of carbon from the surface, whereas the second at ion energies in excess of 100 eV exhibits a drop in sputter rate associated with the subplantation of nitrogen within the carbon matrix. Furthermore, as the sample temperature is increased there is a concomitant decrease in sputter rate suggesting that the rate is controlled by the adsorption and desorption of additional precursor species rather than the thermal desorption of CN. A simple empirical model has been developed in order to elucidate some of the primary reactions involved in the sputter process. Through the incorporation of various previously determined experimental parameters including electron temperature, ion current density, and nitrogen partial pressure the results indicated that molecular nitrogen physisorbed at the ta-C surface was the dominant precursor involved in the chemical sputter process. However, as the physisorption enthalpy of molecular nitrogen is low this suggests that activation of this molecular species takes place only through ion impact at the surface. The obtained results therefore provide important information for the modeling and growth of high density carbon nitride. © 2001 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A study of the pH and temperature dependence of the redox potentials of azurins from five species of bacteria has been performed. The variations in the potentials with pH have been interpreted in terms of electrostatic interactions between the copper site and titrating histidine residues, including the effects of substitutions in the amino acid sequences of the proteins on the electrostatic interactions. A comparison of the observed pH dependences with predictions based on histidine pK_a values known for Pseudomonas aeruginosa (Pae), Alcaligenes denitrificans (Ade), and Alcaligenes faecalis (Afa) azurins indicates that the Pae and Ade redox potentials exhibit pH dependences in line with electrostatic arguments, while Afa azurin exhibits more complex behavior. Redox enthalpies and entropies for four of the azurins at low and high pH values have also been obtained. Based on these results in conjuction with the variable pH experiments, it appears that Bordetella bronchiseptica azurin may undergo a more substantial conformational change with pH than has been observed for other species of azurin.

The temperature dependence of the redox potential of bovine erythrocyte superoxide dismutase (SOD) has been determined at pH 7.0, with potassium ferricyanide as the mediator. The following thermodynamic parameters have been obtained (T = 25°C): E°' = 403±5 mV vs. NHE, ΔG°' = -9.31 kcal/mol, ΔH°' = -21.4 kcal/mol, ΔS°' = -40.7 eu, ΔS°'_(rc) = -25.1 eu. It is apparent from these results that ΔH°', rather than ΔS°', is the dominant factor in establishing the high redox potential of SOD. The large negative enthalpy of reduction may also reflect the factors which give SOD its high specificity toward reduction and oxidation by superoxide.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The disolvated proton, H(OH2)2+ is employed as a chemical reagent in low pressure (˂ 10-5 torr) investigations by ion cyclotron resonance spectroscopy. Since termolecular reactions are absent at low pressure, disolvated protons are not generally observed. However H(OH2)2+ is produced in a sequence of bimolecular reactions in mixtures containing H2O and one of a small number of organohalide precursors. Then a series of hydrated Lewis bases is produced by H3O+ transfer from H(OH2)2+. In Chapter II, the relative stability of hydrated bases containing heteroatoms of both first and second row elements is determined from the preferred direction of H3O+ transfer between BH(OH2)+ complexes. S and P containing bases are shown to bind H3O+ more weakly than O and N bases with comparable proton affinities. A simple model of hydrogen bonding is proposed to account for these observations.

H+ transfer from H(OH2)2+ to several Lewis bases also occurs at low pressure. In Chapter III the relative importance of H3O+ transfer and H+ transfer from H(OH2)2+ to a series of bases is observed to be a function of base strength. Beginning with CH3COOH, the weakest base for which H+ transfer is observed, the importance of H+ transfer increases with increasing proton affinity of the acceptor base. The nature of neutral products formed from H(OH2)2+ by loss of H+ is also considered.

Chapters IV and V deal with thermochemistry of small fluorocarbons determined by photoionization mass spectrometry. The enthalpy of formation of CF2 is considered in Chapter IV. Photoionization of perfluoropropylene, perfluorocyclopropane, and trifluoromethyl benzene yield onsets for ions formed by loss of a CF2 neutral fragment. Earlier determinations of ΔH°f298 (CF2) are reinterpreted using updated thermochemical values and compared with results of this study. The heat of formation of neutral perfluorocyclopropane is also derived. Finally, the energetics of interconversion of perfluoropropylene and perfluorocyclopropane are considered for both the neutrals and their molecular ions.

In Chapter V the heats of formation of CF3+ and CF3I+are derived from photoionization of CF3I. These are considered with respect to ion-molecule reactions observed in CF3I monitored by the techniques of ion cyclotron resonance spectroscopy. Results obtained in previous experiments are also compared.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The adoption of lean premixed prevaporised combustion systems can reduce NOx emissions from gas turbines, but unfortunately also increases their susceptibility to thermoacoustic instabilities. Initially, acoustic waves can produce heat release fluctuations by a variety of mechanisms, often by perturbing the equivalence ratio. If correctly phased, heat release fluctuations can subsequently generate more acoustic waves, which at high amplitude can result in significant structural damage to the combustor. The prediction of this phenomenon is of great industrial interest. In previous work, we have coupled a physics based, kinematic model of the flame with a network model to provide the planar acoustic response necessary to close the feedback loop and predict the onset and amplitude of thermoacoustic instabilities in a lab-scale, axisymmetric single burner combustor. The advantage of a time domain approach is that the modal interaction, the influence of harmonics, and flame saturation can be investigated. This paper extends this approach to more realistic, annular geometries, where both planar and circumferential modes must be considered. In lean premixed prevaporised combustors, fluctuations in equivalence ratio have been shown to be a dominant cause of unsteady combustion. These can occur, for example, due to velocity perturbations in the premix ducts, which can lead to equivalence ratio fluctuations at the fuel injectors, which are subsequently convected downstream to the flame surfaces. Here, they can perturb the heat release by locally altering the flame speed, enthalpy of combustion, and, indirectly, the flame surface area. In many gas turbine designs, particularly aeroengines, the geometries are composed of a ring of premix ducts linking a plenum and an annular combustor. The most unstable modes are often circumferential modes. The network model is used to characterise the flow response of the geometry to heat fluctuations at an appropriate location, such as the fuel injectors. The heat release at each flame holder is determined in the time domain using the kinematic flame model derived, as a function of the flow perturbations in the premix duct. This approach is demonstrated for an annular ring of burners on a in a simple geometry. The approach is then extended to an industrial type gas turbine combustor, and used to predict the limit cycle amplitudes. Copyright © 2012 by ASME.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The low-temperature heat capacities of cyclohexane were measured in the temperature range from 78 to 350 K by means of an automatic adiabatic calorimeter equipped with a new sample container adapted to measure heat capacities of liquids. The sample container was described in detail. The performance of this calorimetric apparatus was evaluated by heat capacity measurements on water. The deviations of experimental heat capacities from the corresponding smoothed values lie within +/-0.3%, while the inaccuracy is within +/-0.4%, compared with the reference data in the whole experimental temperature range. Two kinds of phase transitions were found at 186.065 and 279.684 K corresponding solid-solid and solid-liquid phase transitions, respectively. The entropy and enthalpy of the phase transition, as well as the thermodynamic functions {H-(T)- H-298.15 K} and {S-(T)-S-298.15 K}, were derived from the heat capacity data. The mass fraction purity of cyclohexane sample used in the present calorimetric study was determined to be 99.9965% by fraction melting approach.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Kinetic and electrochemical properties of icosahedral quasicrystalline Ti45Zr35Ni17Cu3 alloy powder as negative electrode material of Ni-MH battery have been investigated at different temperatures. The calculated results show that the apparent activation enthalpy of the charge-transfer reaction is 43.89 kJ mol(-1), and the activation energy of hydrogen diffusion is 21.03 kJ mol(-1). The exchange current density and the diffusion coefficient of hydrogen in the bulky electrode increase with increasing temperature, indicating that increasing temperature is beneficial to charge-transfer reaction and hydrogen diffusion. As a result, the maximum discharge capacity, activation property and high-rate dischargeability are greatly improved with increasing temperature. However, the charge retention and the cycling stability degrade with the increase of the temperature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The nanocomposites of polyamide1010 (PA1010) filled with carbon nanotubes (CNTs) were prepared by melt mixing techniques. The isothermal melt-crystallization kinetics and nonisothermal crystallization behavior of CNTs/PA1010 nanocomposites were investigated by differential scanning calorimetry. The peak temperature, melting point, half-time of crystallization, enthalpy of crystallization, etc. were measured. Two stages of crystallization are observed, including primary crystallization and secondary crystallization. The isothermal crystallization was also described according to Avrami's approach. It has been shown that the addition of CNTs causes a remarkable increase in the overall crystallization rate of PA1010 and affects the mechanism of nucleation and growth of PA1010 crystals. The analysis of kinetic data according to nucleation theories shows that the increment in crystallization rate of CNTs/PA1010 composites results from the decrease in lateral surface free energy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The cloud-point temperatures (T-cl's) of trans-decahydronaphthalene(TD)/polystyrene (PS, (M) over bar (w) = 270 000) solutions were determined by light scattering measurements over a range of temperatures (1-16degreesC), pressures (100-900 bar), and compositions (4.2-21.6 vol.-% polymer). The system phase separates upon cooling and T-cl was found to increase with rising pressure for constant composition. In the absence of special effects, this finding indicates positive excess volume for the mixing. Special attention was paid to the demixing temperatures as a function of pressure for different polymer solutions and the plots in the T-phi plane (where phi signifies volume fractions). The cloud-point curves of polymer solutions under different pressures were observed for different compositions, which demonstrated that pressure has a greater effect on the TD/PS solutions when far from the critical point as opposed to near the critical point. The Sanchez-Lacombe lattice fluid theory (SLLFT) was used to calculate the spinodals, the binodals, the Flory-Huggins (FH) interaction parameter, the enthalpy of mixing, and the volume changes of mixing. The calculated results show that modified PS scaling parameters can describe the thermodynamics of the TD/PS system well. Moreover the SLLFT describes the experimental results well.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The divergent synthesis of a new carbosilane liquid-crystalline (LC) dendrimer of the first generation (D1) is described. Twelve 4-butoxyazobenzene groups are used as mesogenic fragments and attached in the periphery of the molecule. Structure and properties of D1 were characterized by element analysis, H-1 NMR, MALDI-TOF-MS, IR, UV-Vis, polarizing optical micrograph, DSC and WAXD. It is argued that mesophase of nematic type is realized. It is shown that the mesophase type of the dendrimer essentially depends on the chemical nature of the mesogenic groups. Phase behavior of D1 is K82N1331132N67K. The melting point of D1 is 30similar to43 degreesC lower than that of M5, its clearing temperature is 9 similar to 11 degreesC higher than that of M5 and its mesophase region is enlarged by 39 similar to 54 degreesC compared to that of M5. Eight extinguished brushes emanating from a stationary point are observed, corresponding to the high-strength disclination of S = + 2 of dendrimer. The clearing enthalpy of D1 is smaller than the value that is commonly found for phase transition n-i in LC and LC polymers. This may be due to the presence of branched dendrimer cores which cannot be easily deformed to fit into the anisotropic LC phase structure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The three scaling parameters described in Sanchez-Lacombe lattice fluid theory (SLLFT), T*, P* and rho* of pure polystyrene (PS), pure poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and their mixtures are obtained by fitting corresponding experimental pressure volume-temperature data with equation-of-state of SLLFT. A modified combining rule in SLLFT used to match the volume per mer, v* of the PS/PPO mixtures was advanced and the enthalpy of mixing and Flory-Huggins (FH) interaction parameter were calculated using the new rule. It is found that the difference between the new rule and the old one presented by Sanchez and Lacombe is quite small in the calculation of the enthalpy of mixing and FH interaction parameter and the effect of volume-combining rule on the calculation of thermodynamic properties is much smaller than that of energy-combining rule. But the relative value of interaction parameter changes much due to the new volume-based combining rule. This effect can affect the position of phase diagram very much, which is reported elsewhere [Macromolecules 34 (2001) 6291]