978 resultados para Engine pistons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stainless steels are used to intake and exhaust valves production applied as internal combustion engines. In general valves are requested to support cyclic stresses applied due to opening and closing processes during the operation. The objective of this research is to study the influence on the axial fatigue strength of the resulting microstructure after heat treatment at the martensitic X45CrSi93 steel, combined with different surface treatments as hard chrome-plating, nitride and grinding. It was verified a significant increase on the fatigue strength of the martensitic steel after nitriding, compared with results from the chrome-plating specimens. A slight increase in the tensile strength was also noticed on nitrided parts as a consequence of a resistance increase due to nitrogen and carbon solid solution. (C) 2011 Published by Elsevier Ltd. Selection and peer-review under responsibility of ICM11

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper is presented an experimental research in which the grinding of seating surfaces of inlet engine valves was improved by the adoption of the most effective cutting fluid type, matching the new requirements of cutting fluid application. Four different types of cutting fluids (straight oil and three different types of soluble oils) were analyzed. As qualitative and quantitative evaluation parameters of the performance of the cutting fluids, the roughness, the grinding wheel wear, the cutting force and the workpiece residual stress were determined. As a conclusion, the straight oil was the cutting fluid that presented the best results in all of the parameters analyzed. Copyright © 2000 Society of Automotive Engineers, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Study of consumption rate and gaseous pollutant emission from engine tests simulating real work conditions, using spark point manually controlled and exhaust gas recirculation (EGR) in diverse proportion levels. The objective of this work is to re-examine the potential of the EGR conception, a well-known method of combustion control, employed together electronic fuel injection and three-way catalytic converter closed-loop control at a spark ignition engine, verifying the performance characteristics and technical availability of this conception to improve pollution control, fuel economy at low torque drive condition and to improve the engine exhaust components useful life. The pollutant emissions and consumption levels under operational conditions simulations were analysed and compared with the expected by concerning theory and real tests performed by EGR equipped engines by factory. Copyright © 2006 Society of Automotive Engineers, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lubricating oils are crucial in the operation of automotive engines because they both reduce friction between moving parts and protect against corrosion. However, the performance of lubricant oil may be affected by contaminants, such as gasoline, diesel, ethanol, water and ethylene glycol. Although there are many standard methods and studies related to the quantification of contaminants in lubricant oil, such as gasoline and diesel oil, to the best of our knowledge, no methods have been reported for the quantification of ethanol in used Otto cycle engine lubrication oils. Therefore, this work aimed at the development and validation of a routine method based on partial least-squares multivariate analysis combined with attenuated total reflectance in the mid-infrared region to quantify ethanol content in used lubrication oil. The method was validated based on its figures of merit (using the net analyte signal) as follows: limit of detection (0.049%), limit of quantification (0.16%), accuracy (root mean square error of prediction=0.089% w/w), repeatability (0.05% w/w), fit (R 2 =0.9997), mean selectivity (0.047), sensitivity (0.011), inverse analytical sensitivity (0.016% w/w-1) and signal-to-noise ratio (max: 812.4 and min: 200.9). The results show that the proposed method can be routinely implemented for the quality control of lubricant oils. © 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information Paper, No 15

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information Paper, No 26

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three factors define the main difficulties faced by developing countries in the area of trade facilitation: (i) limited understanding and use by governments and business (especially SMEs) of trade facilitation and of ICT tools and techniques; (ii) developing countries' limited capacity for policy analysis and inadequate policy instruments for the implementation of trade facilitation, and (iii) inadequate policy coordination for negotiation on trade facilitation. These obstacles tend to reduce countries' development opportunities and to increase the costs of general economic development and social welfare.The United Nations, through its five regional commissions, is launching a project that seeks to disseminate the benefits of trade facilitation and the standards, tools and requirements for its successful implementation. The project will focus on trade facilitation promoted by: (a) enhanced knowledge and understanding of governments and business regarding trade facilitation and the role of ICT; (b) enhanced use of ICT by SMEs in trade facilitation, and (c) national capacity-building for trade facilitation negotiations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increased fuel economy and driveability of modern internal combustion engine vehicles (ICEVs) are the result of the application of advanced digital electronics to control the operation of the internal combustion engine (ICE). Microprocessors (and micro controllers) play a key role in the engine control, by precisely controlling the amount of both air and fuel admitted into the cylinders. Air intake is controlled by utilizing a throttle valve equipped with a motor and gear mechanism as actuator, and a sensor enabling the measurement of the angular position of the blades. This paperwork presents a lab setup that allows students to control the throttle position using a microcontroller that runs a program developed by them. A commercial throttle body has been employed, whereas a power amplifier and a microcontroller board have been hand assembled to complete the experimental setup. This setup, while based in a high-tech, microprocessor-based solution for a real-world, engine operation optimization problem, has the potential to engage students around a hands-on multidisciplinary lab activity and ignite their interest in learning fundamental and advanced topics of microprocessors systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance and emissions behavior of a Rover 1S/60 turboshaft engine when operated with several blends of aviation kerosene and ox tallow ethyl-ester are shown in this article. The tests were performed with a compressor shaft coupled to an hydraulic dynamometer where data of power and mass fuel flow were collected to determine the brake specific fuel consumption. A flue gas analyzer was positioned at the exhaust duct to collect oxygen, carbon dioxide, carbon monoxide and nitrous oxides. An increase in the specific fuel consumption was observed due to the lesser lower heating value of the most oxygenated blends. However, reductions of CO, CO2 and NO (x) have been observed and no-significant ill effects have occurred in the turbine operation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In worldwide aviation operations, bird collisions with aircraft and ingestions into engine inlets present safety hazards and financial loss through equipment damage, loss of service and disruption to operations. The problem is encountered by all types of aircraft, both military and commercial. Modern aircraft engines have achieved a high level of reliability while manufacturers and users continually strive to further improve the safety record. A major safety concern today includes common-cause events which involve significant power loss on more than one engine. These are externally-inflicted occurrences, with the most frequent being encounters with flocks of birds. Most frequently these encounters occur during flight operations in the area on or near airports, near the ground instead of at cruise altitude conditions. This paper focuses on the increasing threat to aircraft and engines posed by the recorded growth in geese populations in North America. Service data show that goose strikes are increasing, especially in North America, consistent with the growing resident geese populations estimated by the United States Department of Agriculture (USDA). Airport managers, along with the governmental authorities, need to develop a strategy to address this large flocking bird issue. This paper also presents statistics on the overall status of the bird threat for birds of all sizes in North America relative to other geographic regions. Overall, the data shows that Canada and the USA have had marked improvements in controlling the threat from damaging birds - except for the increase in geese strikes. To reduce bird ingestion hazards, more aggressive corrective measures are needed in international air transport to reduce the chances of serious incidents or accidents from bird ingestion encounters. Air transport authorities must continue to take preventative and avoidance actions to counter the threat of birdstrikes to aircraft. The primary objective of this paper is to increase awareness of, and focus attention on, the safety hazards presented by large flocking birds such as geese. In the worst case, multiple engine power loss due to large bird ingestion could result in an off-airport forced landing accident. Hopefully, such awareness will prompt governmental regulatory agencies to address the hazards associated with growing populations of geese in North America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, particulate matter (PM) were characterized from a place impacted by heavy-duty vehicles (Bus Station) fuelled with diesel/biodiesel fuel blend (B3) in the city of Londrina, Brazil. Sixteen priority polycyclic aromatic hydrocarbons (PAH) concentrations were analyzed in the samples by their association with atmospheric PM, mass size distributions and major ions (fluorite, chloride, bromide, nitrate, phosphate, sulfate, nitrite, oxalate; fumarate, formate, succinate and acetate; lithium, sodium, potassium, magnesium, calcium and ammonium). Results indicate that major ions represented 21.2% particulate matter mass. Nitrate, sulfate, and ammonium, respectively, presented the highest concentration levels, indicating that biodiesel may also be a significant source for these ions, especially nitrate. Dibenzo[a,h]anthracene and indeno[1,2,3,-cd]pyrene were the main PAH found, and a higher fraction of PAH particles was found in diameters lower than 0.25 mu m in Londrina bus station. The fine and ultrafine particles were dominant among the PM evaluated, suggesting that biodiesel decreases the total PAH emission. However, it does also increase the fraction of fine and ultrafine particles when compared to diesel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Models are becoming increasingly important in the software development process. As a consequence, the number of models being used is increasing, and so is the need for efficient mechanisms to search them. Various existing search engines could be used for this purpose, but they lack features to properly search models, mainly because they are strongly focused on text-based search. This paper presents Moogle, a model search engine that uses metamodeling information to create richer search indexes and to allow more complex queries to be performed. The paper also presents the results of an evaluation of Moogle, which showed that the metamodel information improves the accuracy of the search.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent developments in piston engine technology have increased performance in a very significant way. Diesel turbocharged/turbo compound engines, fuelled by jet fuels, have great performances. The focal point of this thesis is the transformation of the FIAT 1900 jtd diesel common rail engine for the installation on general aviation aircrafts like the CESSNA 172. All considerations about the diesel engine are supported by the studies that have taken place in the laboratories of the II Faculty of Engineering in Forlì. This work, mostly experimental, concerns the transformation of the automotive FIAT 1900 jtd – 4 cylinders – turbocharged – diesel common rail into an aircraft engine. The design philosophy of the aluminium alloy basement of the spark ignition engine have been transferred to the diesel version while the pistons and the head of the FIAT 1900 jtd are kept in the aircraft engine. Different solutions have been examined in this work. A first V 90° cylinders version that can develop up to 300 CV and whose weight is 30 kg, without auxiliaries and turbocharging group. The second version is a development of e original version of the diesel 1900 cc engine with an optimized crankshaft, that employ a special steel, 300M, and that is verified for the aircraft requirements. Another version with an augmented stroke and with a total displacement of 2500 cc has been examined; the result is a 30% engine heavier. The last version proposed is a 1600 cc diesel engine that work at 5000 rpm, with a reduced stroke and capable of more than 200 CV; it was inspired to the Yamaha R1 motorcycle engine. The diesel aircraft engine design keeps the bore of 82 mm, while the stroke is reduced to 64.6 mm, so the engine size is reduced along with weight. The basement weight, in GD AlSi 9 MgMn alloy, is 8,5 kg. Crankshaft, rods and accessories have been redesigned to comply to aircraft standards. The result is that the overall size is increased of only the 8% when referred to the Yamaha engine spark ignition version, while the basement weight increases of 53 %, even if the bore of the diesel version is 11% lager. The original FIAT 1900 jtd piston has been slightly modified with the combustion chamber reworked to the compression ratio of 15:1. The material adopted for the piston is the aluminium alloy A390.0-T5 commonly used in the automotive field. The piston weight is 0,5 kg for the diesel engine. The crankshaft is verified to torsional vibrations according to the Lloyd register of shipping requirements. The 300M special steel crankshaft total weight is of 14,5 kg. The result reached is a very small and light engine that may be certified for general aviation: the engine weight, without the supercharger, air inlet assembly, auxiliary generators and high pressure body, is 44,7 kg and the total engine weight, with enlightened HP pump body and the titanium alloy turbocharger is less than 100 kg, the total displacement is 1365 cm3 and the estimated output power is 220 CV. The direct conversion of automotive piston engine to aircrafts pays too huge weight penalties. In fact the main aircraft requirement is to optimize the power to weight ratio in order to obtain compact and fast engines for aeronautical use: this 1600 common rail diesel engine version demonstrates that these results can be reached.