930 resultados para Energy Harvesting, Convertitori di potenza, Maximum Power Point Tracking, Applicazioni low power
Resumo:
This paper analyzes the impact of transceiver impairments on outage probability (OP) and throughput of decode-and-forward two-way cognitive relay (TWCR) networks, where the relay is self-powered by harvesting energy from the transmitted signals. We consider two bidirectional relaying protocols namely, multiple access broadcast (MABC) protocol and time division broadcast (TDBC) protocol, as well as, two power transfer policies namely, dual-source (DS) energy transfer and single-fixed-source (SFS) energy transfer. Closed-form expressions for OP and throughput of the network are derived in the context of delay-limited transmission. Numerical results corroborate our analysis, thereby we can quantify the degradation of OP and throughput of TWCR networks due to transceiver hardware impairments. Under the specific parameters, our results indicate that the MABC protocol achieves asymptotically a higher throughput by 0.65 [bits/s/Hz] than the TDBC protocol, while the DS energy transfer scheme offers better performance than the SFS policy for both relaying protocols.
Resumo:
In this paper, we investigate the effect of of the primary network on the secondary network when harvesting energy in cognitive radio in the presence of multiple power beacons and multiple secondary transmitters. In particular, the influence of the primary transmitter's transmit power on the energy harvesting secondary network is examined by studying two scenarios of primary transmitter's location, i.e., the primary transmitter's location is near to the secondary network and the primary transmitter's location is far from the secondary network. In the scenario where the primary transmitter locates near to the secondary network, although secondary transmitter can be benefit from the harvested energy from the primary transmitter, the interference caused by the primary transmitter suppresses the secondary network performance. Meanwhile, in both scenarios, despite the fact that the transmit power of the secondary transmitter can be improved by the support of powerful power beacons, the peak interference constraint at the primary receiver limits this advantage. In addition, the deployment of multiple power beacons and multiple secondary transmitters can improve the performance of the secondary network. The analytical expressions of the outage probability of the secondary network in the two scenarios are also provided and verified by numerical simulations.
Resumo:
In energy harvesting communications, users transmit messages using energy harvested from nature. In such systems, transmission policies of the users need to be carefully designed according to the energy arrival profiles. When the energy management policies are optimized, the resulting performance of the system depends only on the energy arrival profiles. In this dissertation, we introduce and analyze the notion of energy cooperation in energy harvesting communications where users can share a portion of their harvested energy with the other users via wireless energy transfer. This energy cooperation enables us to control and optimize the energy arrivals at users to the extent possible. In the classical setting of cooperation, users help each other in the transmission of their data by exploiting the broadcast nature of wireless communications and the resulting overheard information. In contrast to the usual notion of cooperation, which is at the signal level, energy cooperation we introduce here is at the battery energy level. In a multi-user setting, energy may be abundant in one user in which case the loss incurred by transferring it to another user may be less than the gain it yields for the other user. It is this cooperation that we explore in this dissertation for several multi-user scenarios, where energy can be transferred from one user to another through a separate wireless energy transfer unit. We first consider the offline optimal energy management problem for several basic multi-user network structures with energy harvesting transmitters and one-way wireless energy transfer. In energy harvesting transmitters, energy arrivals in time impose energy causality constraints on the transmission policies of the users. In the presence of wireless energy transfer, energy causality constraints take a new form: energy can flow in time from the past to the future for each user, and from one user to the other at each time. This requires a careful joint management of energy flow in two separate dimensions, and different management policies are required depending on how users share the common wireless medium and interact over it. In this context, we analyze several basic multi-user energy harvesting network structures with wireless energy transfer. To capture the main trade-offs and insights that arise due to wireless energy transfer, we focus our attention on simple two- and three-user communication systems, such as the relay channel, multiple access channel and the two-way channel. Next, we focus on the delay minimization problem for networks. We consider a general network topology of energy harvesting and energy cooperating nodes. Each node harvests energy from nature and all nodes may share a portion of their harvested energies with neighboring nodes through energy cooperation. We consider the joint data routing and capacity assignment problem for this setting under fixed data and energy routing topologies. We determine the joint routing of energy and data in a general multi-user scenario with data and energy transfer. Next, we consider the cooperative energy harvesting diamond channel, where the source and two relays harvest energy from nature and the physical layer is modeled as a concatenation of a broadcast and a multiple access channel. Since the broadcast channel is degraded, one of the relays has the message of the other relay. Therefore, the multiple access channel is an extended multiple access channel with common data. We determine the optimum power and rate allocation policies of the users in order to maximize the end-to-end throughput of this system. Finally, we consider the two-user cooperative multiple access channel with energy harvesting users. The users cooperate at the physical layer (data cooperation) by establishing common messages through overheard signals and then cooperatively sending them. For this channel model, we investigate the effect of intermittent data arrivals to the users. We find the optimal offline transmit power and rate allocation policy that maximize the departure region. When the users can further cooperate at the battery level (energy cooperation), we find the jointly optimal offline transmit power and rate allocation policy together with the energy transfer policy that maximize the departure region.
Resumo:
The rural electrification is characterized by geographical dispersion of the population, low consumption, high investment by consumers and high cost. Moreover, solar radiation constitutes an inexhaustible source of energy and in its conversion into electricity photovoltaic panels are used. In this study, equations were adjusted to field conditions presented by the manufacturer for current and power of small photovoltaic systems. The mathematical analysis was performed on the photovoltaic rural system I- 100 from ISOFOTON, with power 300 Wp, located at the Experimental Farm Lageado of FCA/UNESP. For the development of such equations, the circuitry of photovoltaic cells has been studied to apply iterative numerical methods for the determination of electrical parameters and possible errors in the appropriate equations in the literature to reality. Therefore, a simulation of a photovoltaic panel was proposed through mathematical equations that were adjusted according to the data of local radiation. The results have presented equations that provide real answers to the user and may assist in the design of these systems, once calculated that the maximum power limit ensures a supply of energy generated. This real sizing helps establishing the possible applications of solar energy to the rural producer and informing the real possibilities of generating electricity from the sun.
Resumo:
Hydroelectric systems are well-known for large scale power generation. However, there are virtually no studies on energy harvesting with these systems to produce tens or hundreds of milliwatts. The goal of this work was to study which design parameters from large-scale systems can be applied to small-scale systems. Two types of hydro turbines were evaluated. The first one was a Pelton turbine which is suitable for high heads and low flow rates. The second one was a propeller turbine used for low heads and high flow rates. Several turbine geometries and nozzle diameters were tested for the Pelton system. For the propeller, a three-bladed turbine was tested for different heads and draft tubes. The mechanical power provided by these turbines was measured to evaluate the range of efficiencies of these systems. A small three-phase generator was developed for coupling with the turbines in order to evaluate the generated electric power. Selected turbines were used to test battery charging with hydroelectric systems and a comparison between several efficiencies of the systems was made. Keywords
Resumo:
The use of energy harvesting materials for large infrastructure is a promising and growing field. In this regard, the use of such harvesters for the purpose of structural health monitoring of bridges has been proposed in recent times as one of the feasible options since the deployment of them can remove the necessity of an external power source. This paper addresses the performance issue of such monitors over the life-cycle of a bridge as it deteriorates and the live load on the structure increases. In this regard, a Lead Zirconate Titanate (PZT) material is considered as the energy harvesting material and a comparison is carried out over the operational life of a reinforced concrete bridge. The evolution of annual average daily traffic (AADT) is taken into consideration, as is the degradation of the structure over time, due to the effects of corrosion. Evolution of such harvested energy is estimated over the life-cycle of the bridge and the sensitivity of harvested energy is investigated for varying rates of degradation and changes in AADT. The study allows for designing and understanding the potential of energy harvesters as a health monitor for bridges. This paper also illustrates how the natural growth of traffic on a bridge over time can accentuate the identification of damage, which is desirable for an ageing structure. The paper also assesses the impact and effects of deployment of harvesters in a bridge as a part of its design process, considering performance over the entire life-cycle versus a deployment at a certain age of the structure.
Resumo:
Hydroelectric systems are well-known for large scale power generation. However, there are virtually no studies on energy harvesting with these systems to produce tens or hundreds of milliwatts. The goal of this work was to study which design parameters from large-scale systems can be applied to small-scale systems. Two types of hydro turbines were evaluated. The first one was a Pelton turbine which is suitable for high heads and low flow rates. The second one was a propeller turbine used for low heads and high flow rates. Several turbine geometries and nozzle diameters were tested for the Pelton system. For the propeller, a three-bladed turbine was tested for different heads and draft tubes. The mechanical power provided by these turbines was measured to evaluate the range of efficiencies of these systems. A small three-phase generator was developed for coupling with the turbines in order to evaluate the generated electric power. Selected turbines were used to test battery charging with hydroelectric systems and a comparison between several efficiencies of the systems was made. Keywords
Resumo:
Il presente lavoro di tesi ha riguardato lo studio dello smantellamento di un reattore gas grafite di potenza di I Gen. L’indagine è stata focalizzata in particolare al recupero della grafite irraggiata che ne costituisce il core. Viene presentata una descrizione referenziata del reattore e dei suoi componenti per mettere in evidenza la particolare architettura e le specifiche problematiche ad essa correlate. A valle di un’indagine sulle esperienze internazionali in merito al decommissioning e allo smantellamento di questi tipi di reattori, si forniscono una possibile sequenza di accesso alla cavità del reattore e una procedura per il suo smantellamento; si descrivono sommariamente le tecnologie di taglio e di handling, attualmente allo stato dell’arte, considerate come più idonee a questo tipo di applicazione. Vengono descritte le principali criticità della grafite nuclear grade ed illustrati i fenomeni caratteristici che ne determinano l’evoluzione nel reattore. Sulla base dei dati resi disponibili dalla Sogin S.p:A. e ricorrendo ai dati di letteratura per quelli non disponibili, è stato effettuato un assessment della grafite irraggiata costituente il nocciolo del reattore, rivolto in particolare a determinarne le caratteristiche meccaniche e la resistenza residua post-irraggiamento. Per valutare la possibilità di prelevare la grafite dal nocciolo è stato ipotizzato un dispositivo di presa che agganci per attrito i blocchi di grafite del moderatore attraverso il canale assiale. Infine è stata valutata la fattibilità di tale metodo attraverso una serie di simulazioni agli elementi finiti dirette a verificare la resistenza del blocco in varie condizioni di carico e vincolo. Come risultato si è dimostrata la fattibilità , almeno in via preliminare, del metodo proposto, determinando l’inviluppo di utilizzo del dispositivo di presa nonché la compatibilità del metodo proposto con le tecnologie di handling precedentemente individuate.
Resumo:
Lo scopo del presente progetto di ricerca è quello di dimostrare quelli che potrebbero essere i miglioramenti nell’adottare tecnologie GaN nei convertitori di potenza, soffermandosi sull’ambito Automotive. Si è dunque progettato, simulato ed infine analizzato un sistema di conversione bidirezionale DC-DC. Le prestazioni ottime sono state poi raggiunte attraverso l’introduzione di un sistema di controllo in grado di garantire, in ogni condizione, il miglior funzionamento possibile che garantisca il soddisfacimento delle richieste da parte del veicolo. Questo consentirà quindi di gestire il funzionamento del convertitore sia nelle fasi di scarica che in quelle di rigenerazione (regenerative braking). Al convertitore, è stato introdotto anche un controllo adattivo per la ricerca del dead-time ottimo dei segnali di pilotaggio dei transistor.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
The global interest towards renewable energy production such as wind and solar energy is increasing, which in turn calls for new energy storage concepts due to the larger share of intermittent energy production. Power-to-gas solutions can be utilized to convert surplus electricity to chemical energy which can be stored for extended periods of time. The energy storage concept explored in this thesis is an integrated energy storage tank connected to an oxy-fuel combustion plant. Using this approach, flue gases from the plant could be fed directly into the storage tank and later converted into synthetic natural gas by utilizing electrolysis-methanation route. This work utilizes computational fluid dynamics to model the desublimation of carbon dioxide inside a storage tank containing cryogenic liquid, such as liquefied natural gas. Numerical modelling enables the evaluation of the transient flow patterns caused by the desublimation, as well as general fluid behaviour inside the tank. Based on simulations the stability of the cryogenic storage and the magnitude of the key parameters can be evaluated.
Resumo:
As a vital factor affecting system cost and lifetime, energy consumption in wireless sensor networks (WSNs) has been paid much attention to. This article reviews existing energy harvesting technology applied in WSNs, and analyzes advantages of harvesting radio frequency (RF) energy in WSNs.
Resumo:
Wireless sensor networks (WSNs) have been widely used in pervasive systems such as intelligent buildings. As a vital factor of product cost, energy consuming in WSN has been focused upon, but only via energy harvesting can the problem be overcome radically. This article presents a new approach to harvesting electromagnetic energy for WSN from useless radio frequency (RF) signals transmitted in WSN, with a quantitative analysis showing its feasibility.
Resumo:
As a vital factor affecting system cost and lifetime, energy consumption in wireless sensor networks (WSNs) has been paid much attention to. This article presents a new approach to making use of electromagnetic energy from useless radio frequency (RF) signals transmitted in WSNs, with a quantitative analysis showing its feasibility. A mechanism to harvest the energy either passively or actively is proposed.