992 resultados para Encode enterotoxins genes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ovarian cancer is the leading cause of cancer-related death for females due to lack of specific early detection method. It is of great interest to find molecular-based biomarkers which are sensitive and specific to ovarian cancer for early diagnosis, prognosis and therapeutics. miRNAs have been proposed to be potential biomarkers that could be used in cancer prevention and therapeutics. The current study analyzed the miRNA and mRNA expression data extracted from the Cancer Genome Atlas (TCGA) database. Using simple linear regression and multiple regression models, we found 71 miRNA-mRNA pairs which were negatively associated between 56 miRNAs and 24 genes of PI3K/AKT pathway. Among these miRNA and mRNA target pairs, 9 of them were in agreement with the predictions from the most commonly used target prediction programs including miRGen, miRDB, miRTarbase and miR2Disease. These shared miRNA-mRNA pairs were considered to be the most potential genes that were involved in ovarian cancer. Furthermore, 4 of the 9 target genes encode cell cycle or apoptosis related proteins including Cyclin D1, p21, FOXO1 and Bcl2, suggesting that their regulator miRNAs including miR-16, miR-96 and miR-21 most likely played important roles in promoting tumor growth through dysregulated cell cycle or apoptosis. miR-96 was also found to directly target IRS-1. In addition, the results showed that miR-17 and miR-9 may be involved in ovarian cancer through targeting JAK1. This study might provide evidence for using miRNA or miRNA profile as biomarker.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analysis of several Salmonella typhimurium in vivo-induced genes located in regions of atypical base composition has uncovered acquired genetic elements that cumulatively engender pathogenicity. Many of these regions are associated with mobile elements, encode predicted adhesin and invasin-like functions, and are required for full virulence. Some of these regions distinguish broad host range from host-adapted Salmonella serovars and may contribute to inherent differences in host specificity, tissue tropism, and disease manifestation. Maintenance of this archipelago of acquired sequence by selection in specific hosts reveals a fossil record of the evolution of pathogenic species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular and biochemical mechanisms that modulate the production of eumelanin or pheomelanin pigments involve the opposing effects of two intercellular signaling molecules, α-melanocyte stimulating hormone (MSH) and agouti signal protein (ASP). ASP is an antagonist of MSH signaling through the melanocyte-specific MSH receptor, although its mechanism(s) of action is controversial. We previously have reported significant down-regulation of all known melanogenic genes during the eumelanin to pheomelanin switch in murine hair follicle melanocytes and in cultured melanocytes treated with recombinant ASP. To identify factors that might be involved in the switch to pheomelanogenesis, we screened ASP-treated melanocytes by using differential display and identified three up-regulated genes: a DNA replication control protein, a basic helix–loop–helix transcription factor, and a novel gene. We have simultaneously identified six down-regulated genes in ASP-treated melanocytes; two of those encode tyrosinase and TRP2, melanogenic genes known to be down-regulated during pheomelanogenesis, which provide good internal controls for this approach. These results suggest that there are complex mechanisms involved in the switch to pheomelanin production, and that these modulated genes might be involved in the pleiotropic changes seen in yellow mice, including the change in coat color.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The integrin family of cell surface receptors is strongly conserved in higher animals, but the evolutionary history of integrins is obscure. We have identified and sequenced cDNAs encoding integrin β subunits from a coral (phylum Cnidaria) and a sponge (Porifera), indicating that these proteins existed in the earliest stages of metazoan evolution. The coral βCn1 and, especially, the sponge βPo1 sequences are the most divergent of the “β1-class” integrins and share a number of features not found in any other vertebrate or invertebrate integrins. Perhaps the greatest difference from other β subunits is found in the third and fourth repeats of the cysteine-rich stalk, where the generally conserved spacings between cysteines are highly variable, but not similar, in βCn1 and βPo1. Alternatively spliced cDNAs, containing a stop codon about midway through the full-length translated sequence, were isolated from the sponge library. These cDNAs appear to define a boundary between functional domains, as they would encode a protein that includes the globular ligand-binding head but would be missing the stalk, transmembrane, and cytoplasmic domains. These and other sequence comparisons with vertebrate integrins are discussed with respect to models of integrin structure and function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Telomerase is a specialized reverse transcriptase consisting of both RNA and protein components. Previous characterization of yeast telomerase function in vivo identified four EST (for ever shorter telomeres) genes that, when mutated, result in the phenotypes expected for a defect in telomerase. Consistent with this genetic prediction, the EST2 gene has recently been shown to encode the catalytic component of telomerase. Using an in vitro assay, we show here that telomerase activity is present in extracts prepared from yeast strains carrying est1-Δ, est3-Δ, and cdc13–2est mutations. Therefore, while these three genes are necessary for telomerase function in vivo, they do not encode components essential for core catalytic activity. When Est2p, the one EST gene product found to be essential for catalytic activity, was immunoprecipitated from extracts, the telomerase RNA subunit was also specifically precipitated, supporting the conclusion that these two components are in a stable complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ETS transcription factors play important roles in hematopoiesis, angiogenesis, and organogenesis during murine development. The ETS genes also have a role in neoplasia, for example in Ewing’s sarcomas and retrovirally induced cancers. The ETS genes encode transcription factors that bind to specific DNA sequences and activate transcription of various cellular and viral genes. To isolate novel ETS target genes, we used two approaches. In the first approach, we isolated genes by the RNA differential display technique. Previously, we have shown that the overexpression of ETS1 and ETS2 genes effects transformation of NIH 3T3 cells and specific transformants produce high levels of the ETS proteins. To isolate ETS1 and ETS2 responsive genes in these transformed cells, we prepared RNA from ETS1, ETS2 transformants, and normal NIH 3T3 cell lines and converted it into cDNA. This cDNA was amplified by PCR and displayed on sequencing gels. The differentially displayed bands were subcloned into plasmid vectors. By Northern blot analysis, several clones showed differential patterns of mRNA expression in the NIH 3T3-, ETS1-, and ETS2-expressing cell lines. Sixteen clones were analyzed by DNA sequence analysis, and 13 of them appeared to be unique because their DNA sequences did not match with any of the known genes present in the gene bank. Three known genes were found to be identical to the CArG box binding factor, phospholipase A2-activating protein, and early growth response 1 (Egr1) genes. In the second approach, to isolate ETS target promoters directly, we performed ETS1 binding with MboI-cleaved genomic DNA in the presence of a specific mAb followed by whole genome PCR. The immune complex-bound ETS binding sites containing DNA fragments were amplified and subcloned into pBluescript and subjected to DNA sequence and computer analysis. We found that, of a large number of clones isolated, 43 represented unique sequences not previously identified. Three clones turned out to contain regulatory sequences derived from human serglycin, preproapolipoprotein C II, and Egr1 genes. The ETS binding sites derived from these three regulatory sequences showed specific binding with recombinant ETS proteins. Of interest, Egr1 was identified by both of these techniques, suggesting strongly that it is indeed an ETS target gene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Obesity is a complex disease, and multiple genes contribute to the trait. The description of five genes (ob, db, tub, Ay, and fat) responsible for distinct syndromes of spontaneous monogenic obesity in mice has advanced our knowledge of the genetics of obesity. However, many other genes involved in the expression of this disease remain to be determined. We report here the identification of an additional class of genes involved in the regulation of adipose tissue mass. These genes encode receptors mediating leukocyte adhesion. Mice deficient in intercellular adhesion molecule-1 became spontaneously obese in old age on normal mouse chow or at a young age when provided with a diet rich in fat. Mice deficient in the counterreceptor for intercellular adhesion molecule-1, the leukocyte integrin αMβ2 (Mac-1), showed a similar obesity phenotype. Since all mice consumed approximately the same amount of food as controls, the leukocyte function appears to be in regulating lipid metabolism and/or energy expenditure. Our results indicate that (i) leukocytes play a role in preventing excess body fat deposition and (ii) defects in leukocyte adhesion receptors can result in obesity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The proneural genes encode basic-helix–loop–helix (bHLH) proteins and promote the formation of distinct types of sensory organs. In Drosophila, two sets of proneural genes, atonal (ato) and members of the achaete–scute complex (ASC), are required for the formation of chordotonal (ch) organs and external sensory (es) organs, respectively. We assayed the production of sensory organs in transgenic flies expressing chimeric genes of ato and scute (sc), a member of ASC, and found that the information that specifies ch organs resides in the bHLH domain of ato; chimeras containing the b domain of ato and the HLH domain of sc also induced ch organ formation, but to a lesser extent than those containing the bHLH domain of ato. The b domains of ato and sc differ in seven residues. Mutations of these seven residues in the b domain of ato suggest that most or perhaps all of these residues are required for induction of ch organs. None of these seven residues is predicted to contact DNA directly by computer simulation using the structure of the myogenic factor MyoD as a model, implying that interaction of ato with other cofactors is likely to be involved in neuronal type specification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three different cDNAs, Prh-19, Prh-26, and Prh-43 [3′-phosphoadenosine-5′-phosphosulfate (PAPS) reductase homolog], have been isolated by complementation of an Escherichia coli cysH mutant, defective in PAPS reductase activity, to prototrophy with an Arabidopsis thaliana cDNA library in the expression vector λYES. Sequence analysis of the cDNAs revealed continuous open reading frames encoding polypeptides of 465, 458, and 453 amino acids, with calculated molecular masses of 51.3, 50.5, and 50.4 kDa, respectively, that have strong homology with fungal, yeast, and bacterial PAPS reductases. However, unlike microbial PAPS reductases, each PRH protein has an N-terminal extension, characteristic of a plastid transit peptide, and a C-terminal extension that has amino acid and deduced three-dimensional homology to thioredoxin proteins. Adenosine 5′-phosphosulfate (APS) was shown to be a much more efficient substrate than PAPS when the activity of the PRH proteins was tested by their ability to convert 35S-labeled substrate to acid-volatile 35S-sulfite. We speculate that the thioredoxin-like domain is involved in catalytic function, and that the PRH proteins may function as novel “APS reductase” enzymes. Southern hybridization analysis showed the presence of a small multigene family in the Arabidopsis genome. RNA blot hybridization with gene-specific probes revealed for each gene the presence of a transcript of ≈1.85 kb in leaves, stems, and roots that increased on sulfate starvation. To our knowledge, this is the first report of the cloning and characterization of plant genes that encode proteins with APS reductase activity and supports the suggestion that APS can be utilized directly, without activation to PAPS, as an intermediary substrate in reductive sulfate assimilation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Type II restriction and modification (R-M) genes have been described as selfish because they have been shown to impose selection for the maintenance of the plasmid that encodes them. In our experiments, the type I R-M system EcoKI does not behave in the same way. The genes specifying EcoKI are, however, normally residents of the chromosome and therefore our analyses were extended to monitor the deletion of chromosomal genes rather than loss of plasmid vector. If EcoKI were to behave in the same way as the plasmid-encoded type II R-M systems, the loss of the relevant chromosomal genes by mutation or recombination should lead to cell death because the cell would become deficient in modification enzyme and the bacterial chromosome would be vulnerable to the restriction endonuclease. Our data contradict this prediction; they reveal that functional type I R-M genes in the chromosome are readily replaced by mutant alleles and by alleles encoding a type I R-M system of different specificity. The acquisition of allelic genes conferring a new sequence specificity, but not the loss of the resident genes, is dependent on the product of an unlinked gene, one predicted [Prakash-Cheng, A., Chung, S. S. & Ryu, J. (1993) Mol. Gen. Genet. 241, 491–496] to be relevant to control of expression of the genes that encode EcoKI. Our evidence suggests that not all R-M systems are evolving as “selfish” units; rather, the diversity and distribution of the family of type I enzymes we have investigated require an alternative selective pressure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Arabidopsis thaliana disease resistance genes RPS2 and RPM1 belong to a class of plant disease resistance genes that encode proteins that contain an N-terminal tripartite nucleotide binding site (NBS) and a C- terminal tandem array of leucine-rich repeats. RPS2 and RPM1 confer resistance to strains of the bacterial phytopathogen Pseudomonas syringae carrying the avirulence genes avrRpt2 and avrB, respectively. In these gene-for-gene relationships, it has been proposed that pathogen avirulence genes generate specific ligands that are recognized by cognate receptors encoded by the corresponding plant resistance genes. To test this hypothesis, it is crucial to know the site of the potential molecular recognition. Mutational analysis of RPS2 protein and in vitro translation/translocation studies indicated that RPS2 protein is localized in the plant cytoplasm. To determine whether avirulence gene products themselves are the ligands for resistance proteins, we expressed the avrRpt2 and avrB genes directly in plant cells using a novel quantitative transient expression assay, and found that expression of avrRpt2 and avrB elicited a resistance response in plants carrying the corresponding resistance genes. This observation indicates that no bacterial factors other than the avirulence gene products are required for the specific resistance response as long as the avirulence gene products are correctly localized. We propose that molecular recognition of P. syringae in RPS2- and RPM1-specified resistance occurs inside of plant cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cells of several major algal groups are evolutionary chimeras of two radically different eukaryotic cells. Most of these “cells within cells” lost the nucleus of the former algal endosymbiont. But after hundreds of millions of years cryptomonads still retain the nucleus of their former red algal endosymbiont as a tiny relict organelle, the nucleomorph, which has three minute linear chromosomes, but their function and the nature of their ends have been unclear. We report extensive cryptomonad nucleomorph sequences (68.5 kb), from one end of each of the three chromosomes of Guillardia theta. Telomeres of the nucleomorph chromosomes differ dramatically from those of other eukaryotes, being repeats of the 23-mer sequence (AG)7AAG6A, not a typical hexamer (commonly TTAGGG). The subterminal regions comprising the rRNA cistrons and one protein-coding gene are exactly repeated at all three chromosome ends. Gene density (one per 0.8 kb) is the highest for any cellular genome. None of the 38 protein-coding genes has spliceosomal introns, in marked contrast to the chlorarachniophyte nucleomorph. Most identified nucleomorph genes are for gene expression or protein degradation; histone, tubulin, and putatively centrosomal ranbpm genes are probably important for chromosome segregation. No genes for primary or secondary metabolism have been found. Two of the three tRNA genes have introns, one in a hitherto undescribed location. Intergenic regions are exceptionally short; three genes transcribed by two different RNA polymerases overlap their neighbors. The reported sequences encode two essential chloroplast proteins, FtsZ and rubredoxin, thus explaining why cryptomonad nucleomorphs persist.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antibodies to phosphatidylcholine (PtC), a common constituent of mammalian and bacterial cell membranes, represent a large proportion of the natural antibody repertoire in mice. Previous studies of several mouse strains (e.g., C57BL/6) have shown that anti-PtC antibodies are mainly encoded by the VH11 and VH12 immunoglobulin heavy chain variable region gene families. We show here, however, that VH11 and VH12 encode only a small proportion of the anti-PtC antibodies in BALB/c mice. Instead, VHQ52-encoded antibodies predominate in this strain. In addition, two-thirds of the cells expressing VHQ52 family genes use a single gene (which, interestingly, has been previously shown to predominate in the anti-oxazolone response). We also show here that in anti-PtC antibodies from all strains, the distinctive antigen-binding sites associated with VHQ52 differ substantially from those associated with VH11 and VH12. That is, VHQ52-containing transcripts preferentially use the joining region JH4 rather than JH1 and exhibit more diverse complementarity-determining region 3 (CDR3) junctions with more N-region nucleotide additions at the gene segment junctions. Thus, the VH gene family that predominates in the anti-PtC repertoire differs among mouse strains, whereas the distinctive VHDJH rearrangements (CDR3, JH) associated with each VH gene family are similar in all strains. We discuss these findings in the context of a recent hypothesis suggesting that CDR3 structure, independent of VH framework, is sufficient to define the specificity of an antibody.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The molecular identity and function of the Drosophila melanogaster Y-linked fertility factors have long eluded researchers. Although the D. melanogaster genome sequence was recently completed, the fertility factors still were not identified, in part because of low cloning efficiency of heterochromatic Y sequences. Here we report a method for iterative blast searching to assemble heterochromatic genes from shotgun assemblies, and we successfully identify kl-2 and kl-3 as 1β- and γ-dynein heavy chains, respectively. Our conclusions are supported by formal genetics with X-Y translocation lines. Reverse transcription–PCR was successful in linking together unmapped sequence fragments from the whole-genome shotgun assembly, although some sequences were missing altogether from the shotgun effort and had to be generated de novo. We also found a previously undescribed Y gene, polycystine-related (PRY). The closest paralogs of kl-2, kl-3, and PRY (and also of kl-5) are autosomal and not X-linked, suggesting that the evolution of the Drosophila Y chromosome has been driven by an accumulation of male-related genes arising de novo from the autosomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The MADS genes encode a family of transcription factors, some of which control the identities of floral organs in flowering plants. To understand the role of MADS genes in the evolution of floral organs, five MADS genes (CMADS1, 2, 3, 4, and 6) were cloned from the fern Ceratopteris richardii, a nonflowering plant. A gene tree of partial amino acid sequences of seed plant and fern MADS genes showed that the fern genes form three subfamilies. All members of one of the fern MADS subfamilies have additional amino-terminal amino acids, which is a synapomorphic character of the AGAMOUS subfamily of the flowering plant MADS genes. Their structural similarity indicates a sister relationship between the two subfamilies. The temporal and spatial patterns of expression of the five fern MADS genes were assessed by Northern blot analyses and in situ hybridizations. CMADS1, 2, 3, and 4 are expressed similarly in the meristematic regions and primordia of sporophyte shoots and roots, as well as in reproductive structures, including sporophylls and sporangial initials, although the amount of expression in each tissue is different in each gene. CMADS6 is expressed in gametophytic tissues but not in sporophytic tissues. The lack of organ-specific expression of MADS genes in the reproductive structures of the fern sporophyte may indicate that the restriction of MADS gene expression to specific reproductive organs and the specialization of MADS gene functions as homeotic selector genes in the flowering plant lineage were important in floral organ evolution.