990 resultados para Emission band
Resumo:
The progression to end-stage renal failure is independent of the initial pathogenic mechanism. Metabolic acidosis is a common consequence of chronic renal failure that results from inadequate ammonium excretion and decreased tubular bicarbonate reabsorption. Protoporphyrin IX (PpIX) is the immediate metabolic precursor of the heme molecule. The purpose of this study was to evaluate the levels of erythrocytes protoporphyrin IX at an animal model during progressive renal disease. A total of 36 eight-week-old male Wistar rats were divided into six groups: Normal, 4 and 8 weeks after 5/6 nephrectomy (NX). Renal function was evaluated by creatinine clearance and plasma creatinine levels. The autofluorescence of erythrocytes porphyrin of healthy and NX rats was analyzed using fluorescence spectroscopy. Emission spectra were obtained by exciting the samples at 405 nm. Significant differences between normal and NX rats autofluorescence shape occurred in the 600-700 nm spectral region. A correlation was observed between emission band intensity at 635 nm and progression of renal disease.
Resumo:
Synthetic beta-spodumene polycrystals were produced by a devitrification method, undoped and doped with controlled concentration of the Ce3+ or Mn2+ impurities. The TL properties of these polycrystals and of a colourless natural spodumene were investigated. Some dosimetric properties of them were also discussed. The dopants do not affect the TL peak position with respect a pure beta-spodumene sample but the intensity of the TL peaks at 180 and 280 degrees C is improved in the Ce-doped one. The Ce3+ ions do not participate in the TL light emission; on the other hand, the presence of Mn2+ ions cause an emission band around 600-650 nm in the TL light emission spectrum. The emission around 400 nm appears in the TL emission spectrum of all the samples and it is believed to correspond to aluminium centre ([AlO4/hole](0)) recombination with an electron. The more sensitive samples to gamma-radiation are the colourless natural spodumene and the Ce-doped synthetic spodumene, respectively. The colourless natural spodumene crystal shows a TL peak at 180 degrees C suitable for dosimetry, while for Ce-doped beta-spodumene sample the TL peaks at 180 and 280 degrees C can be used. No fading of the TL emission was observed for Ce-doped beta-spodumene sample up to 80 days after irradiation. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The photoluminescence of anodically prepared ZrO(2) films was investigated. Morphological and microstructural analyses reveal an oxide surface covered by a high distribution of blisters and the major crystallographic structure is the monoclinic phase with small quantities of tetragonal phase. The photoluminescence reveals a broad emission band in the range between 350 and 650 nm. It was proposed that the photoluminescence mechanism is originated from the emission of a recombination center related to defects (oxygen vacancies) formed during Zr anodization. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Bismuth germanate films were prepared by dip coating and spin coating techniques and the dependence of the luminescent properties of the samples on the resin viscosity and deposition technique was investigated. The resin used for the preparation of the films was obtained via Pechini method, employing the precursors Bi(2)O(3) and GeO(2). Citric acid and ethylene glycol were used as chelating and cross-linking agents, respectively. Results from X-ray diffraction and Raman spectroscopy indicated that the films sintered at 700 degrees C for 10 h presented the single crystalline phase Bi(4)Ge(3)O(12). SEM images of the films have shown that homogeneous flat films can be produced by the two techniques investigated. All the samples presented the typical Bi(4)Ge(3)O(12) emission band centred at 505 nm. Films with 3.1 mu m average thickness presented 80% of the luminescence intensity registered for the single crystal at the maximum wavelength. Published by Elsevier B.V.
Resumo:
Ce(0.8)SM(0.2)O(1.9) and CeO(2) nanomaterials were prepared by a solution technique to produce an ultrafine particulate material with high sinterability. In this work, the structural characteristics, the photoluminescent behavior and the ionic conductivity of the synthesized materials are focused. The thermally decomposed material consists of less than 10 nm in diameter nanoparticles. The Raman spectrum of pure CeO(2) consists of a single triple degenerate F(2g) model characteristic of the fluorite-like structure. The full width at half maximum of this band decreases linearly with increasing calcination temperature. The photoluminescence spectra show a broadened emission band assigned to the ligand-to-metal charge-transfer states O -> Ce(4+). The emission spectra of the Ce(0.8)Sm(0.2)O(1.9) specimens present narrow bands arising from the 4G(5/2) -> (6)H(J) transitions (J = 5/2, 7/2, 9/2 and 11/2) of Sm(3+) ion due to the efficient energy transfer from the O -> Ce(4+) transitions to the emitter 4G(5/2) level. The ionic conductivity of sintered specimens shows a significant dependence on density. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
intense photoluminescence in the visible region was observed at room temperature in standard soda-lime-silica glass powder, mechanically milled in a high-energy attrition mill. The emission band maximum shows an interesting dependence on the exciting wavelength, suggesting the possibility to tune the PL emission. These findings indicate that the photoluminescence may be directly related to unsatisfied chemical bonds correlated with the high surface area. The Raman scattering and ultraviolet-visible optical reflectance measurements corroborate this assertion. Transmission electron microscopy measurements indicate that samples milled more than 10 h present the formation of nanocrystallites with about 10-20 nm. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Bacterial cellulose (BC) hydrated membranes present nanometric reticulated structure that can be used as a template in the preparation of new organic-inorganic hybrids. BC-silica hybrids were prepared from BC membranes and tetraethoxysilane, (TEOS) at neutral pH conditions at room temperature. Macroscopically homogeneous membranes were obtained containing up to 66 wt.% of silica spheres, 20-30 nm diameter. Scanning electron micrographs clearly show the silica spheres attached to cellulose microfibrils. By removing the cellulose, the silica spheres can be easily recovered. The new hybrids are stable up to 300 degrees C and display a broad emission band under UV excitation assigned to oxygen-related defects at the silica particles surface. Emission color can be tuned by changing the excitation wavelength.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Nanorods and nanoplates of Y2O3:Eu3+ powders were synthesized through the thermal decomposition of the Y(OH)(3) precursors using a microwave-hydrothermal method in a very short reaction time. These powders were analyzed by X-ray diffraction, field emission scanning electron microscopy, Fourrier transform Raman, as well as photoluminescence measurements. Based on these results, these materials presented nanoplates and nanorods morphologies. The broad emission band between 300 and 440 nm ascribed to the photoluminescence of Y2O3 matrix shifts as the procedure used in the microwave-hydrothermal assisted method changes in the Y2O3:Eu3+ samples. The presence of Eu3+ and the hydrothermal treatment time are responsible for the band shifts in Y2O3:Eu3+ powders, since in the pure Y2O3 matrix this behavior was not observed. Y2O3:Eu3+ powders also show the characteristic Eu3+ emission lines at 580, 591, 610, 651 and 695 nm, when excited at 393 nm. The most intense band at 610 nm is responsible for the Eu3+ red emission in these materials, and the Eu3+ lifetime for this transition presented a slight increase as the time used in the microwave-hydrothermal assisted method increases.
Resumo:
Crystalline molybdate thin films were prepared by the complex polymerization method. The AMoO(4) (A = Ca, Sr, Ba) films were deposited onto Si wafers by the spinning technique. The Mo-O bond in the AMoO(4) structure was confirmed by FTIR spectra. X-ray diffraction revealed the presence of crystalline scheelite-type phase. The mass, size, and basicity of A(2+) cations was found to be dependent on the intrinsic characteristics of the materials. The grain size increased in the following order: CaMoO4 < SrMoO4 < BaMoO4. The emission band wavelength was detected at around 576 nm. Our findings suggest that the material's morphology and photoluminescence were both affected by the variations in cations (Ca, Sr, or Ba) and in the thermal treatment.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Intense photoluminescence in highly disordered strontium titanate amorphous thin films prepared by the polymeric precursor method was observed at room temperature (300 K). The luminescence spectra of SrTiO3 amorphous thin films at room temperature revealed an intense single-emission band in the visible region. X-ray absorption near edge structure was used to probe the local atomic structure of SrTiO3 amorphous and crystalline thin films. Photoluminescence intensity in the 535 nm range was found to be correlated with the presence of non-bridging oxygen defects. A discussion is presented of the nature of this photoluminescence, which may be related to the disordered structure in SrTiO3 amorphous thin films. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Monolithic silica xerogels doped with different concentrations of Er3+, Yb3+ and Al3+ were prepared by sol-gel route. Densification was achieved by thermal treatment in air at 950degreesC for 120 h with a heating rate of 0.1degreesC/min. We studied the luminescence properties of the I-4(13/2)-->I-4(15/2) emission band of Er3+ as a function of the Al/Er/Yb concentration and we paid particular attention to the alumina effects. Raman spectroscopy and Vis-NIR absorption were used to monitor the degree of densification of the glasses and the residual OH content.
Resumo:
A polymeric precursor method was used to synthesis PbTiO3 amorphous thin film processed at low temperature. The luminescence spectra of PbTiO3 amorphous thin films at room temperature revealed an intense single-emission band in the visible region, the visible emission band was found to be dependent on the thermal treatment history, Photoluminescence properties Versus different annealing temperatures were investigated. The experimental results (XRD, AFM, FL) indicate that the nature of photoluminescence (PL) must be related to the disordered structure of PbTiO3 amorphous thin films, Copyright (C) 2000 John Wiley & Sons, Ltd.
Resumo:
A new lead fluoroborate glass (PbO-PbF2-B2O3) doped with ytterbium (Yb:PbFB) is presented. Samples with different concentrations of Yb3+ were produced and had their emission cross-sections, fluorescence lifetimes and minimum pump intensities determined. They have high refractive index of 2.2 and a density of 4.4 g/cm(3). For a doping level of 1.153x10(20) ions/cm(3), the fluorescence lifetime, after excitation at 968 nm, is 0.81 ms, which is comparable to Yb:tellurite laser glass. Also, an emission band at 1022 nm is measured with emission cross-section of approximately 1.07x10(-20) cm(2) and fluorescence effective linewidth of 60 nm, which is comparable to Yb:phosphate laser glass. (C) 2001 Optical Society of America.