911 resultados para Electronics in military engineering.
Resumo:
Phenylboronic acids can exist, in principle, in three different conformers (syn,syn; syn,anti and anti,anti) with distinct energy profiles. In their native state, these compounds prefer the energetically favored syn, anti-conformation. In molecular complexes, however, the functionality exhibits conformational diversity. In this paper we report a series of co-crystals, with N-donor compounds, prepared by a design strategy involving the synthons based on the syn, syn-conformation of the boronic acid functionality. For this purpose, we employed compounds with the 1,2-diazo fragment (alprazolam, 1H-tetrazole, acetazolamide and benzotriazole), 1,10-phenanthroline and 2,2'-bipyridine for the co-crystallization experiments. However, our study shows that the mere presence of the 1,2-diazo fragment in the coformer does not guarantee the successful formation of co-crystals with a syn, syn-conformation of the boronic acid. [GRAPHICS] The -B(OH)(2) fragment makes unsymmetrical O-H center dot center dot center dot N heterosynthons with alprazolam (ALP) and 1,10-phenanthroline (PHEN). In the co-crystals of phenylboronic acids with 1H-tetrazole (TETR) and 2,2'-bipyridine (BPY), the symmetrical boronic acid dimer is the major synthon. In the BPY complex, boronic acid forms linear chains and the pyridine compound interacts with the lateral OH of boronic acid dimers that acts as a connector, thus forming a ladder structure. In the TETR complex, each heterocycle interacts with three boronic acids. While two boronic acids interact using the phenolic group, the third molecule generates O-H center dot center dot center dot N hydrogen bonds using the extra OH group, of -B(OH)(2) fragment, left after the dimer formation. Thus, although molecules were selected retrosynthetically with the 1,2-diazo fragment or with nearby hetero-atoms to induce co-crystal formation using the syn,syn-orientation of the -B(OH)(2) functionality, co-crystal formation is in fact selective and is probably driven by energy factors. Acetazolamide (ACET) contains self-complementary functional groups and hence creates stable homosynthons. Phenylboronic acids being weak competitors fail to perturb the homosynthons and hence the components crystallize separately. Therefore, besides the availability of possible hydrogen bond acceptors in the required position and orientation, the ability of the phenyl-boronic acid to perturb the existing interactions is also a prerequisite to form co-crystals. This is illustrated in the table below. In the case of ALP, PHEN and BPY, the native structures are stabilized by weak interactions and may be influenced by the boronic acid fragment. Thus phenylboronic acids can attain co-crystals with those compounds, wherein the cyclic O-H center dot center dot center dot N hydrogen bonds are stronger than the individual homo-interactions. This can lower the lattice energy of the molecular complex as compared with the individual crystals. [GRAPHICS] Phenylboronic acids show some selectivity in the formation of co-crystals with N-heterocycles. The differences in solubility of the components fall short to provide a possible reason for the selective formation of co-crystals only with certain compounds. These compounds, being weak acids, do not follow the Delta pK(a) analysis and hence fail to provide any conclusive observation. Theoretical results show that of the three conformers possible, the syn,anti conformer is the most stable. The relative stabilities of the three conformers syn,anti,syn,syn and anti,anti are 0.0, 2.18 and 3.14 kcal/mol, respectively. The theoretical calculations corroborate the fact that only energetically favorable synthons can induce the formation of heterosynthons, as in ALP and PHEN complexes. From a theoretical and structural analysis it is seen that phenylboronic acids will form interactions with those molecules wherein the heterocyclic and acidic fragments can interrupt the homosynthons. However, the energy profile is shallow and can be perturbed easily by the presence of competing functional groups (such as OH and COOH) in the vicinity. [GRAPHICS] .
Resumo:
The idea of a structural landscape is based on the fact that a large number of crystal structures can be associated with a particular organic molecule. Taken together, all these structures constitute the landscape. The landscape includes polymorphs, pseudopolymorphs and solvates. Under certain circumstances, it may also include multicomponent crystals (or co-crystals) that contain the reference molecule as one of the components. Under still other circumstances, the landscape may include the crystal structures of molecules that are closely related to the reference molecule. The idea of a landscape is to facilitate the understanding of the process of crystallization. It includes all minima that can, in principle, be accessed by the molecule in question as it traverses the path from solution to the crystal. Isonicotinamide is a molecule that is known to form many co-crystals. We report here a 2 : 1 co-crystal of this amide with 3,5-dinitrobenzoic acid, wherein an unusual N-H center dot center dot center dot N hydrogen-bonded pattern is observed. This crystal structure offers some hints about the recognition processes between molecules that might be implicated during crystallization. Also included is a review of other recent results that illustrate the concept of the structural landscape.
Resumo:
Nanoindentation is a technique for measuring the elastic modulus and hardness of small amounts of materials. This method, which has been used extensively for characterizing metallic and inorganic solids, is now being applied to organic and metalorganic crystals, and has also become relevant to the subject of crystal engineering, which is concerned with the design of molecular solids with desired properties and functions. Through nanoindentation it is possible to correlate molecular-level properties such as crystal packing, interaction characteristics, and the inherent anisotropy with micro/macroscopic events such as desolvation, domain coexistence, layer migration, polymorphism, and solid-state reactivity. Recent developments and exciting opportunities in this area are highlighted in this Minireview.
Resumo:
CONSPECTUS: The halogen bond is an attractive interaction in which an electrophilic halogen atom approaches a negatively polarized species. Short halogen atom contacts in crystals have been known for around 50 years. Such contacts are found in two varieties: type I, which is symmetrical, and type II, which is bent. Both are influenced by geometric and chemical considerations. Our research group has been using halogen atom interactions as design elements in crystal engineering, for nearly 30 years. These interactions include halogen center dot center dot center dot halogen interactions (X center dot center dot center dot X) and halogen center dot center dot center dot heteroatom interactions (X center dot center dot center dot B). Many X center dot center dot center dot X and almost all X center dot center dot center dot B contacts can be classified as halogen bonds. In this Account, we illustrate examples of crystal engineering where one can build up from previous knowledge with a focus that is provided by the modern definition of the halogen bond. We also comment on the similarities and differences between halogen bonds and hydrogen bonds. These interactions are similar because the protagonist atoms halogen and hydrogen are both electrophilic in nature. The interactions are distinctive because the size of a halogen atom is of consequence when compared with the atomic sizes of, for example, C, N, and O, unlike that of a hydrogen atom. Conclusions may be drawn pertaining to the nature of X center dot center dot center dot X interactions from the Cambridge Structural Database (CSD). There is a clear geometric and chemical distinction between type I and type II, with only type II being halogen bonds. Cl/Br isostructurality is explained based on a geometric model. In parallel, experimental studies on 3,4-dichlorophenol and its congeners shed light on the nature of halogen center dot center dot center dot halogen interactions and reveal the chemical difference between Cl and Br. Variable temperature studies also show differences between type I and type II contacts. In terms of crystal design, halogen bonds offer a unique opportunity in the strength, atom size and interaction gradation; this may be used in the design of ternary cocrystals. Structural modularity in which an entire crystal structure is defined as a combination of modules is rationalized on the basis of the intermediate strength of a halogen bond. The specific directionality of the halogen bond makes it a good tool to achieve orthogonality in molecular crystals. Mechanical properties can be tuned systematically by varying these orthogonally oriented halogen center dot center dot center dot halogen interactions. In a further development, halogen bonds are shown to play a systematic role in organization of LSAMs (long range synthon aufbau module), which are bigger structural units containing multiple synthons. With a formal definition in place, this may be the right time to look at differences between halogen bonds and hydrogen bonds and exploit them in more subtle ways in crystal engineering.
Resumo:
A lower-upper symmetric Gauss-Seidel (LU-SGS) subiteration scheme is constructed for time-marching of the fluid equations. The Harten-Lax-van Leer-Einfeldt-Wada (HLLEW) scheme is used for the spatial discretization. The same subiteration formulation is applied directly to the structural equations of motion in generalized coordinates. Through subiteration between the fluid and structural equations, a fully implicit aeroelastic solver is obtained for the numerical simulation of fluid/structure interaction. To improve the ability for application to complex configurations, a multiblock grid is used for the flow field calculation and transfinite interpolation (TFI) is employed for the adaptive moving grid deformation. The infinite plate spline (IPS) and the principal of virtual work are utilized for the data transformation between the fluid and structure. The developed code was first validated through the comparison of experimental and computational results for the AGARD 445.6 standard aeroelastic wing. Then, the flutter character of a tail wing with control surface was analyzed. Finally, flutter boundaries of a complex aircraft configuration were predicted.
Resumo:
Through the coupling between aerodynamic and structural governing equations, a fully implicit multiblock aeroelastic solver was developed for transonic fluid/stricture interaction. The Navier-Stokes fluid equations are solved based on LU-SGS (lower-upper symmetric Gauss-Seidel) Time-marching subiteration scheme and HLLEW (Harten-Lax-van Leer-Einfeldt-Wada) spacing discretization scheme and the same subiteration formulation is applied directly to the structural equations of motion in generalized coordinates. Transfinite interpolation (TFI) is used for the grid deformation of blocks neighboring the flexible surfaces. The infinite plate spline (IPS) and the principal of virtual work are utilized for the data transformation between fluid and structure. The developed code was fort validated through the comparison of experimental and computational results for the AGARD 445.6 standard aeroelastic wing. In the subsonic and transonic range, the calculated flutter speeds and frequencies agree well with experimental data, however, in the supersonic range, the present calculation overpredicts the experimental flutter points similar to other computations. Then the flutter character of a complete aircraft configuration is analyzed through the calculation of the change of structural stiffness. Finally, the phenomenon of aileron buzz is simulated for the weakened model of a supersonic transport wing/body model at Mach numbers of 0.98 and l.05. The calculated unsteady flow shows, on the upper surface, the shock wave becomes stronger as the aileron deflects downward, and the flow behaves just contrary on the lower surface of the wing. Corresponding to general theoretical analysis, the flow instability referred to as aileron buzz is induced by a stronger shock alternately moving on the upper and lower surfaces of wing. For the rigid structural model, the flow is stable at all calculated Mach numbers as observed in experiment
Resumo:
A lower-upper symmetric Gauss-Seidel (LU-SGS) subiteration scheme is constructed for time-marching of the fluid equations. The Harten-Lax-van Leer-Einfeldt-Wada (HLLEW) scheme is used for the spatial discretization. The same subiteration formulation is applied directly to the structural equations of motion in generalized coordinates. Through subiteration between the fluid and structural equations, a fully implicit aeroelastic solver is obtained for the numerical simulation of fluid/structure interaction. To improve the ability for application to complex configurations, a multiblock grid is used for the flow field calculation and transfinite interpolation (TFI) is employed for the adaptive moving grid deformation. The infinite plate spline (IPS) and the principal of virtual work are utilized for the data transformation between the fluid and structure. The developed code was first validated through the comparison of experimental and computational results for the AGARD 445.6 standard aeroelastic wing. Then, the flutter character of a tail wing with control surface was analyzed. Finally, flutter boundaries of a complex aircraft configuration were predicted.
Resumo:
The United States and Japanese counterpart panels on aquaculture were formed in 1969 under the United States-Japan Cooperative Program in Natural Resources (UJNR). The panels currently include specialists drawn from the federal departments most concerned with aquaculture. Charged with exploring and developing bilateral cooperation, the panels have focused their efforts on exchanging information related to aquaculture which could be of benefit to both countries. The UJNR was begun during the Third Cabinet-Level Meeting of the Joint United States-Japan Committee on Trade and Economic Affairs in January 1964. In addition to aquaculture, current subjects in the program include desalination of seawater, toxic microorganisms, air pollution, energy, forage crops, national park management, mycoplasmosis, wind and seismic effects, protein resources, forestry, and several joint panels and committees in marine resources research, development, and utilization. Accomplishments include: Increased communication and cooperation among technical specialists; exchanges of information, data, and research findings; annual meetings of the panels, a policy-coordinative body; administrative staff meetings; exchanges of equipment, materials, and samples; several major technical conferences; and beneficial effects on international relations. (PDF file contains 76 pages.)
Resumo:
This is an Author's Accepted Manuscript of an article published in “Emergence: Complexity and Organization”, 15 (2), pp. 14-22 (2013), copyright Taylor & Francis.
Resumo:
146 p.