938 resultados para Electronic learning
Resumo:
- Objectives To explore if active learning principles be applied to nursing bioscience assessments and will this influence student perception of confidence in applying theory to practice? - Design and Data Sources A review of the literature utilising searches of various databases including CINAHL, PUBMED, Google Scholar and Mosby's Journal Index. - Methods The literature search identified research from twenty-six original articles, two electronic books, one published book and one conference proceedings paper. - Results Bioscience has been identified as an area that nurses struggle to learn in tertiary institutions and then apply to clinical practice. A number of problems have been identified and explored that may contribute to this poor understanding and retention. University academics need to be knowledgeable of innovative teaching and assessing modalities that focus on enhancing student learning and address the integration issues associated with the theory practice gap. Increased bioscience education is associated with improved patient outcomes therefore by addressing this “bioscience problem” and improving the integration of bioscience in clinical practice there will subsequently be an improvement in health care outcomes. - Conclusion From the literature several themes were identified. First there are many problems with teaching nursing students bioscience education. These include class sizes, motivation, concentration, delivery mode, lecturer perspectives, student's previous knowledge, anxiety, and a lack of confidence. Among these influences the type of assessment employed by the educator has not been explored or identified as a contributor to student learning specifically in nursing bioscience instruction. Second that educating could be achieved more effectively if active learning principles were applied and the needs and expectations of the student were met. Lastly, assessment influences student retention and the student experience and as such assessment should be congruent with the subject content, align with the learning objectives and be used as a stimulus tool for learning.
Resumo:
In this paper, we investigate the use of reinforcement learning (RL) techniques to the problem of determining dynamic prices in an electronic retail market. As representative models, we consider a single seller market and a two seller market, and formulate the dynamic pricing problem in a setting that easily generalizes to markets with more than two sellers. We first formulate the single seller dynamic pricing problem in the RL framework and solve the problem using the Q-learning algorithm through simulation. Next we model the two seller dynamic pricing problem as a Markovian game and formulate the problem in the RL framework. We solve this problem using actor-critic algorithms through simulation. We believe our approach to solving these problems is a promising way of setting dynamic prices in multi-agent environments. We illustrate the methodology with two illustrative examples of typical retail markets.
Resumo:
This paper presents the design and implementation of a learning controller for the Automatic Generation Control (AGC) in power systems based on a reinforcement learning (RL) framework. In contrast to the recent RL scheme for AGC proposed by us, the present method permits handling of power system variables such as Area Control Error (ACE) and deviations from scheduled frequency and tie-line flows as continuous variables. (In the earlier scheme, these variables have to be quantized into finitely many levels). The optimal control law is arrived at in the RL framework by making use of Q-learning strategy. Since the state variables are continuous, we propose the use of Radial Basis Function (RBF) neural networks to compute the Q-values for a given input state. Since, in this application we cannot provide training data appropriate for the standard supervised learning framework, a reinforcement learning algorithm is employed to train the RBF network. We also employ a novel exploration strategy, based on a Learning Automata algorithm,for generating training samples during Q-learning. The proposed scheme, in addition to being simple to implement, inherits all the attractive features of an RL scheme such as model independent design, flexibility in control objective specification, robustness etc. Two implementations of the proposed approach are presented. Through simulation studies the attractiveness of this approach is demonstrated.
Resumo:
Support vector machines (SVM) are a popular class of supervised models in machine learning. The associated compute intensive learning algorithm limits their use in real-time applications. This paper presents a fully scalable architecture of a coprocessor, which can compute multiple rows of the kernel matrix in parallel. Further, we propose an extended variant of the popular decomposition technique, sequential minimal optimization, which we call hybrid working set (HWS) algorithm, to effectively utilize the benefits of cached kernel columns and the parallel computational power of the coprocessor. The coprocessor is implemented on Xilinx Virtex 7 field-programmable gate array-based VC707 board and achieves a speedup of upto 25x for kernel computation over single threaded computation on Intel Core i5. An application speedup of upto 15x over software implementation of LIBSVM and speedup of upto 23x over SVMLight is achieved using the HWS algorithm in unison with the coprocessor. The reduction in the number of iterations and sensitivity of the optimization time to variation in cache size using the HWS algorithm are also shown.
Resumo:
Selection of relevant features is an open problem in Brain-computer interfacing (BCI) research. Sometimes, features extracted from brain signals are high dimensional which in turn affects the accuracy of the classifier. Selection of the most relevant features improves the performance of the classifier and reduces the computational cost of the system. In this study, we have used a combination of Bacterial Foraging Optimization and Learning Automata to determine the best subset of features from a given motor imagery electroencephalography (EEG) based BCI dataset. Here, we have employed Discrete Wavelet Transform to obtain a high dimensional feature set and classified it by Distance Likelihood Ratio Test. Our proposed feature selector produced an accuracy of 80.291% in 216 seconds.
Resumo:
Fingerprints are used for identification in forensics and are classified into Manual and Automatic. Automatic fingerprint identification system is classified into Latent and Exemplar. A novel Exemplar technique of Fingerprint Image Verification using Dictionary Learning (FIVDL) is proposed to improve the performance of low quality fingerprints, where Dictionary learning method reduces the time complexity by using block processing instead of pixel processing. The dynamic range of an image is adjusted by using Successive Mean Quantization Transform (SMQT) technique and the frequency domain noise is reduced using spectral frequency Histogram Equalization. Then, an adaptive nonlinear dynamic range adjustment technique is utilized to determine the local spectral features on corresponding fingerprint ridge frequency and orientation. The dictionary is constructed using spatial fundamental frequency that is determined from the spectral features. These dictionaries help in removing the spurious noise present in fingerprints and reduce the time complexity by using block processing instead of pixel processing. Further, dictionaries are used to reconstruct the image for matching. The proposed FIVDL is verified on FVC database sets and Experimental result shows an improvement over the state-of-the-art techniques. (C) 2015 The Authors. Published by Elsevier B.V.
Resumo:
In a time when Technology Supported Learning Systems are being widely used, there is a lack of tools that allows their development in an automatic or semi-automatic way. Technology Supported Learning Systems require an appropriate Domain Module, ie. the pedagogical representation of the domain to be mastered, in order to be effective. However, content authoring is a time and effort consuming task, therefore, efforts in automatising the Domain Module acquisition are necessary.Traditionally, textbooks have been used as the main mechanism to maintain and transmit the knowledge of a certain subject or domain. Textbooks have been authored by domain experts who have organised the contents in a means that facilitate understanding and learning, considering pedagogical issues.Given that textbooks are appropriate sources of information, they can be used to facilitate the development of the Domain Module allowing the identification of the topics to be mastered and the pedagogical relationships among them, as well as the extraction of Learning Objects, ie. meaningful fragments of the textbook with educational purpose.Consequently, in this work DOM-Sortze, a framework for the semi-automatic construction of Domain Modules from electronic textbooks, has been developed. DOM-Sortze uses NLP techniques, heuristic reasoning and ontologies to fulfill its work. DOM-Sortze has been designed and developed with the aim of automatising the development of the Domain Module, regardless of the subject, promoting the knowledge reuse and facilitating the collaboration of the users during the process.
Resumo:
The author uses clicker technology to incorporate polling and multiple choice question techniques into library instruction classes. Clickers can be used to give a keener understanding of how many students grasp the concepts presented in a specific class session. Typically, a student that aces a definition-type question will fail to answer an application-type question correctly. Immediate, electronic feedback helps to calibrate teaching approaches and gather data about learning outcomes. This presentation will analyze learning outcomes specific to scientific disciplines, and demonstrate the usefulness of clickers to engage and sustain student learning.
Resumo:
Humans are able of distinguishing more than 5000 visual categories even in complex environments using a variety of different visual systems all working in tandem. We seem to be capable of distinguishing thousands of different odors as well. In the machine learning community, many commonly used multi-class classifiers do not scale well to such large numbers of categories. This thesis demonstrates a method of automatically creating application-specific taxonomies to aid in scaling classification algorithms to more than 100 cate- gories using both visual and olfactory data. The visual data consists of images collected online and pollen slides scanned under a microscope. The olfactory data was acquired by constructing a small portable sniffing apparatus which draws air over 10 carbon black polymer composite sensors. We investigate performance when classifying 256 visual categories, 8 or more species of pollen and 130 olfactory categories sampled from common household items and a standardized scratch-and-sniff test. Taxonomies are employed in a divide-and-conquer classification framework which improves classification time while allowing the end user to trade performance for specificity as needed. Before classification can even take place, the pollen counter and electronic nose must filter out a high volume of background “clutter” to detect the categories of interest. In the case of pollen this is done with an efficient cascade of classifiers that rule out most non-pollen before invoking slower multi-class classifiers. In the case of the electronic nose, much of the extraneous noise encountered in outdoor environments can be filtered using a sniffing strategy which preferentially samples the visensor response at frequencies that are relatively immune to background contributions from ambient water vapor. This combination of efficient background rejection with scalable classification algorithms is tested in detail for three separate projects: 1) the Caltech-256 Image Dataset, 2) the Caltech Automated Pollen Identification and Counting System (CAPICS) and 3) a portable electronic nose specially constructed for outdoor use.
Resumo:
We show how machine learning techniques based on Bayesian inference can be used to reach new levels of realism in the computer simulation of molecular materials, focusing here on water. We train our machine-learning algorithm using accurate, correlated quantum chemistry, and predict energies and forces in molecular aggregates ranging from clusters to solid and liquid phases. The widely used electronic-structure methods based on density-functional theory (DFT) give poor accuracy for molecular materials like water, and we show how our techniques can be used to generate systematically improvable corrections to DFT. The resulting corrected DFT scheme gives remarkably accurate predictions for the relative energies of small water clusters and of different ice structures, and greatly improves the description of the structure and dynamics of liquid water.
Resumo:
Ramlogan, R.,& Tedd, L. (2006). Use and non-use of electronic information sources by undergraduates at the University of the West Indies. Online Information Review, 30(1), 24-42.
Resumo:
Urquhart, C., Lonsdale, R.,Thomas, R., Spink, S., Yeoman, A., Armstrong, C. & Fenton, R. (2003). Uptake and use of electronic information services: trends in UK higher education from the JUSTEIS project. Program, 37(3), 167-180. Sponsorship: JISC
Resumo:
Urquhart,C., Thomas, R., Spink, S., Fenton, R., Yeoman, A., Lonsdale, R., Armstrong, C., Banwell, L., Ray, K., Coulson, G. & Rowley, J. (2005). Student use of electronic information services in further education. International Journal of Information Management, 25(4), 347-362. Sponsorship: JISC
Resumo:
Urquhart, C., Spink, S., Thomas, R., Yeoman, A., Durbin, J., Turner, J., Fenton, R. & Armstrong, C. (2004). Evaluating the development of virtual learning environments in higher and further education. In J. Cook (Ed.), Blue skies and pragmatism: learning technologies for the next decade. Research proceedings of the 11th Association for Learning Technology conference (ALT-C 2004), 14-16 September 2004, University of Exeter, Devon, England (pp. 157-169). Oxford: Association for Learning Technology Sponsorship: JISC