960 resultados para Electromechanical Heart Model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein kinase C beta II (PKC beta II) levels increase in the myocardium of patients with end-stage heart failure (HF). Also targeted overexpression of PKC beta II in the myocardium of mice leads to dilated cardiomyopathy associated with inflammation, fibrosis and myocardial dysfunction. These reports suggest a deleterious role of PKC beta II in HF development. Using a post-myocardial infarction (MI) model of HF in rats, we determined the benefit of chronic inhibition of PKC beta II on the progression of HF over a period of 6 weeks after the onset of symptoms and the cellular basis for these effects. Four weeks after MI, rats with HF signs that were treated for 6 weeks with the PKC beta II selective inhibitor (beta IIV5-3 conjugated to TAT(47-57) carrier peptide) (3 mg/kg/day) showed improved fractional shortening (from 21% to 35%) compared to control (TAT(47-57) carrier peptide alone). Formalin-fixed mid-ventricle tissue sections stained with picrosirius red, haematoxylin and eosin and toluidine blue dyes exhibited a 150% decrease in collagen deposition, a two-fold decrease in inflammation and a 30% reduction in mast cell degranulation, respectively, in rat hearts treated with the selective PKC beta II inhibitor. Further, a 90% decrease in active TGF beta 1 and a significant reduction in SMAD2/3 phosphorylation indicated that the selective inhibition of PKC beta II attenuates cardiac remodelling mediated by the TGF-SMAD signalling pathway. Therefore, sustained selective inhibition of PKC beta II in a post-MI HF rat model improves cardiac function and is associated with inhibition of pathological myocardial remodelling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To analyse the sensitivity and specificity of clinical indicators of ineffective airway clearance in children with congenital heart disease and to identify the indicators that have high predictive power. The precise establishment of nursing diagnoses has been found to be one of the factors contributing to higher quality of care and cost reduction in healthcare institutions. The use of indicators to diagnose ineffective airway clearance could improve care of children with congenital heart disease. Longitudinal study. Participants consisted of 45 children, <= 1 year of age, with congenital heart disease, who had not had definitive or palliative surgical correction. Six assessments were made at 2-day intervals. Each clinical indicator was defined based on previously established operational criteria. Sensitivity, specificity and positive and negative predictive values of each indicator were calculated based on a model for the longitudinal data. A nursing diagnosis of ineffective airway clearance was made in 31% of patients on the first assessment, rising to 71% on the last assessment, for a 40% increase. Sensitivity was highest for Changes in Respiratory Rates/Rhythms (0.99), followed by Adventitious Breath Sounds (0.97), Sputum Production (0.85) and Restlessness (0.53). Specificity was higher for Sputum Production (0.92), followed by Restlessness (0.73), Adventitious Breath Sounds (0.70) and Changes in Respiratory Rates/Rhythms (0.17). The best positive predictive values occurred for Sputum Production (0.93) and Adventitious Breath Sounds (0.80). Adventitious Breath Sounds followed by Sputum Production were the indicators that had the best overall sensitivity and specificity as well as the highest positive predictive values. The use of simple indicators in nursing diagnoses can improve identification of ineffective airway clearance in children with congenital heart disease, thus leading to early treatment of the problem and better care for these children.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a critical analysis of methodologies to evaluate the effective (or generalized) electromechanical coupling coefficient (EMCC) for structures with piezoelectric elements. First, a review of several existing methodologies to evaluate material and effective EMCC is presented. To illustrate the methodologies, a comparison is made between numerical, analytical and experimental results for two simple structures: a cantilever beam with bonded extension piezoelectric patches and a simply-supported sandwich beam with an embedded shear piezoceramic. An analysis of the electric charge cancelation effect on the effective EMCC observed in long piezoelectric patches is performed. It confirms the importance of reinforcing the electrodes equipotentiality condition in the finite element model. Its results indicate also that smaller (segmented) and independent piezoelectric patches could be more interesting for energy conversion efficiency. Then, parametric analyses and optimization are performed for a cantilever sandwich beam with several embedded shear piezoceramic patches. Results indicate that to fully benefit from the higher material coupling of shear piezoceramic patches, attention must be paid to the configuration design so that the shear strains in the patches are maximized. In particular, effective square EMCC values higher than 1% were obtained embedding nine well-spaced short piezoceramic patches in an aluminum/foam/aluminum sandwich beam.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work extends a previously presented refined sandwich beam finite element (FE) model to vibration analysis, including dynamic piezoelectric actuation and sensing. The mechanical model is a refinement of the classical sandwich theory (CST), for which the core is modelled with a third-order shear deformation theory (TSDT). The FE model is developed considering, through the beam length, electrically: constant voltage for piezoelectric layers and quadratic third-order variable of the electric potential in the core, while meclianically: linear axial displacement, quadratic bending rotation of the core and cubic transverse displacement of the sandwich beam. Despite the refinement of mechanical and electric behaviours of the piezoelectric core, the model leads to the same number of degrees of freedom as the previous CST one due to a two-step static condensation of the internal dof (bending rotation and core electric potential third-order variable). The results obtained with the proposed FE model are compared to available numerical, analytical and experimental ones. Results confirm that the TSDT and the induced cubic electric potential yield an extra stiffness to the sandwich beam. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work discusses a 4D lung reconstruction method from unsynchronized MR sequential images. The lung, differently from the heart, does not have its own muscles, turning impossible to see its real movements. The visualization of the lung in motion is an actual topic of research in medicine. CT (Computerized Tomography) can obtain spatio-temporal images of the heart by synchronizing with electrocardiographic waves. The FOV of the heart is small when compared to the lung`s FOV. The lung`s movement is not periodic and is susceptible to variations in the degree of respiration. Compared to CT, MR (Magnetic Resonance) imaging involves longer acquisition times and it is not possible to obtain instantaneous 3D images of the lung. For each slice, only one temporal sequence of 2D images can be obtained. However, methods using MR are preferable because they do not involve radiation. In this paper, based on unsynchronized MR images of the lung an animated B-Repsolid model of the lung is created. The 3D animation represents the lung`s motion associated to one selected sequence of MR images. The proposed method can be divided in two parts. First, the lung`s silhouettes moving in time are extracted by detecting the presence of a respiratory pattern on 2D spatio-temporal MR images. This approach enables us to determine the lung`s silhouette for every frame, even on frames with obscure edges. The sequence of extracted lung`s silhouettes are unsynchronized sagittal and coronal silhouettes. Using our algorithm it is possible to reconstruct a 3D lung starting from a silhouette of any type (coronal or sagittal) selected from any instant in time. A wire-frame model of the lung is created by composing coronal and sagittal planar silhouettes representing cross-sections. The silhouette composition is severely underconstrained. Many wire-frame models can be created from the observed sequences of silhouettes in time. Finally, a B-Rep solid model is created using a meshing algorithm. Using the B-Rep solid model the volume in time for the right and left lungs were calculated. It was possible to recognize several characteristics of the 3D real right and left lungs in the shaded model. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background-The effectiveness of heart failure disease management proarams in patients under cardiologists` care over long-term follow-up is not established. Methods and Results-We investigated the effects of a disease management program with repetitive education and telephone monitoring on primary (combined death or unplanned first hospitalization and quality-of-life changes) and secondary end points (hospitalization, death, and adherence). The REMADHE [Repetitive Education and Monitoring for ADherence for Heart Failure] trial is a long-term randomized, prospective, parallel trial designed to compare intervention with control. One hundred seventeen patients were randomized to usual care, and 233 to additional intervention. The mean follow-up was 2.47 +/- 1.75 years, with 54% adherence to the program. In the intervention group, the primary end point composite of death or unplanned hospitalization was reduced (hazard ratio, 0.64; confidence interval, 0.43 to 0.88; P=0.008), driven by reduction in hospitalization. The quality-of-life questionnaire score improved only in the intervention group (P<0.003). Mortality was similar in both groups. Number of hospitalizations (1.3 +/- 1.7 versus 0.8 +/- 1.3, P<0.0001), total hospital days during the follow-up (19.9 +/- 51 versus 11.1 +/- 24 days, P<0.0001), and the need for emergency visits (4.5 +/- 10.6 versus 1.6 +/- 2.4, P<0.0001) were lower in the intervention group. Beneficial effects were homogeneous for sex, race, diabetes and no diabetes, age, functional class, and etiology. Conclusions-For a longer follow-up period than in previous studies, this heart failure disease management program model of patients under the supervision of a cardiologist is associated with a reduction in unplanned hospitalization, a reduction of total hospital days, and a reduced need for emergency care, as well as improved quality of life, despite modest program adherence over time. (Circ Heart Fail. 2008;1:115-124.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mice expressing human cholesteryl ester transfer protein (huCETP) are more resistant to Escherichia coli bacterial wall LIPS because death rates 5 days after intraperitoneal inoculation of LIPS were higher in wild-type than in huCETP(+/-) mice, whereas all huCETP(+/+) mice remained alive. After LIPS inoculation, plasma concentrations of TNF-alpha and IL-6 increased less in huCETP(+/+) than in wild-type mice. LPS in vitro elicited lower TNF-alpha production by CETP expressing than by wild-type macrophages. In addition, TNF-alpha production by RAW 264.7 murine macrophages increased on incubation with LPS but decreased in a dose-dependent manner when human CETP was added to the medium. Human CETP in vitro enhanced the LIPS binding to plasma high-density lipoprotein/low-density lipoprotein. The liver uptake of intravenous infused C-14-LPS from Salmonella typhimurium was greater in huCETP(+/+) than in wild-type mice. Present data indicate for the first time that CETP is an endogenous component involved in the first line of defense against an exacerbated production of proinflammatory mediators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction. Lung tranplantation, a consolidated treatment for end-stage lung disease, utilizes preservation solutions, such as low potassium dextran (LPD), to mitigate ischemia reperfusion injury. We sought the local development of LPD solutions in an attempt to facilitate access and enhance usage. We also sought to evaluate the effectiveness of a locally manufactured LPD solution in a rat model of ex vivo lung perfusion. Methods. We randomized the following groups \?\adult of male Wistar rats (n = 25 each): Perfadex (LPD; Vitro life, Sweden); locally manufactured LPD-glucose (LPDnac) (Farmoterapica, Brazil), and normal saline solution (SAL) with 3 ischemic times (6, 12, and 24 hours). The harvested heart lung blocks were flushed with solution at 4 C. After storage, the blocks were connected to an IL-2 Isolated Perfused Rat or Guinea Pig Lung System (Harvard Apparatus) and reperfused with homologous blood for 60 minutes. Respiratory mechanics, pulmonary artery pressure, perfusate blood gas analysis, and lung weight were measured at 10-minute intervals. Comparisons between groups and among ischemic times were performed using analysis of variance with a 5% level of significance. Results. Lungs preserved for 24 hours were nonviable and therefore excluded from the analysis. Those preserved for 6 hours showed better ventilatory mechanics when compared with 12 hours. The oxygenation capacity was not different between lungs flushed with LPD or LPDnac, regardless of the ischemic time. SAL lungs showed higher PCO(2) values than the other solutions. Lung weight increased over time during perfusion; however, there were no significant differences among the tested solutions (LPD, P = .23; LPDnac, P = .41; SAL, P = .26). We concluded that the LPDnac solution results in gas exchange were comparable to the original LPD (Perfadex); however ventilatory mechanics and edema formation were better with LPD, particularly among lungs undergoing 6 hours of cold ischemia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Heart failure and diabetes often occur simultaneously in patients, but the prognostic value of glycemia in chronic heart failure is debatable. We evaluated the role of glycemia on prognosis of heart failure. Methods Outpatients with chronic heart failure from the Long-term Prospective Randomized Controlled Study Using Repetitive Education at Six-Month Intervals and Monitoring for Adherence in Heart Failure Outpatients (REMADHE) trial were grouped according to the presence of diabetes and level of glycemia. All-cause mortality/heart transplantation and unplanned hospital admission were evaluated. Results Four hundred fifty-six patients were included (135 [29.5%] female, 124 [27.2%] with diabetes mellitus, age of w50.2 +/- 11.4 years, and left-ventricle ejection fraction of 34.7% +/- 10.5%). During follow-up (3.6 +/- 2.2 years), 27 (5.9%) patients were submitted to heart transplantation and 202 (44.2%) died; survival was similar in patients with and without diabetes mellitus. When patients with and without diabetes were categorized according to glucose range (glycemia <= 100 mg/dL [5.5 mmol/L]), as well as when distributed in quintiles of glucose, the survival was significantly worse among patients with lower levels of glycemia. This finding persisted in Cox proportional hazards regression model that included gender, etiology, left ventricle ejection fraction, left ventricle diastolic diameter, creatinine level and beta-blocker therapy, and functional status (hazard ratio 1.45, 95% CI 1.09-1.69, P = .039). No difference regarding unplanned hospital admission was found. Conclusion We report on an inverse association between glycemia and mortality in outpatients with chronic heart failure. These results point to a new pathophysiologic understanding of the interactions between diabetes mellitus, hyperglycemia, and heart disease. (Am Heart J 2010; 159: 90-7.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Matrix metalloproteinases (MMPs) are crucial to the development and maintenance of healthy tissue and are mainly involved in extracellular matrix (ECM) remodeling of skeletal muscle. This study evaluated the effects of chronic allergic airway inflammation (CAAI), induced by ovalbumin, and aerobic training in the MMPs activity in mouse diaphragm muscle. Thirty mice were divided into 6 groups: 1) control; 2) ovalbumin; 3) treadmill trained at 50% of maximum speed; 4) ovalbumin and trained at 50%; 5) trained at 75%; 6) ovalbumin and trained at 75%. CAAI did not after MMPs activities in diaphragm muscle. Nevertheless, both treadmill aerobic trainings, associated with CAAI increased the MMP-2 and -1 activities. Furthermore, MMP-9 was not detected in any group. Together, these findings suggest an ECM remodeling in diaphragm muscle of asthmatic mice submitted to physical training. This result may be useful for a better understanding of functional significance of changes in the MMPs activity in response to physical training in asthma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: In vitro studies and ambulatory ECG recordings from the MERLIN TIMI-36 clinical trial suggest that the novel antianginal agent ranolazine may have the potential to suppress atrial arrhythmias. However, there are no reports of effects of ranolazine on atrial electrophysiologic properties in large intact animals. Methods and Results: In 12 closed-chest anesthetized pigs, effects of intravenous ranolazine (similar to 9 mu M plasma concentration) on multisite atrial effective refractory period (ERP), conduction time (CT), and duration and inducibility of atrial fibrillation (AF) initiated by intrapericardial acetylcholine were investigated. Ranolazine increased ERP by a median of 45 ms (interquartile range 29-50 ms; P < 0.05, n = 6) in right and left atria compared to control at pacing cycle length (PCL) of 400 ms. However, ERP increased by only 28 (24-34) ms in right ventricle (P < 0.01, n = 6). Ranolazine increased atrial CT from 89 (71-109) ms to 98 (86-121) ms (P = 0.04, n = 6) at PCL of 400 ms. Ranolazine decreased AF duration from 894 (811-1220) seconds to 621 (549-761) seconds (P = 0.03, n = 6). AF was reinducible in 1 of 6 animals after termination with ranolazine compared with all 6 animals during control period (P = 0.07). Dominant frequency (DF) of AF was reduced by ranolazine in left atrium from 11.7 (10.7-20.5) Hz to 7.6 (2.9-8.8) Hz (P = 0.02, n = 6). Conclusions: Ranolazine, at therapeutic doses, increased atrial ERP to greater extent than ventricular ERP and prolonged atrial CT in a frequency-dependent manner in the porcine heart. AF duration and DF were also reduced by ranolazine. Potential role of ranolazine in AF management merits further investigation. (J Cardiovasc Electrophysiol, Vol. 20, pp. 796-802, July 2009).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We assessed a new experimental model of isolated right ventricular (RV) failure, achieved by means of intramyocardial injection of ethanol. RV dysfunction was induced in 13 mongrel dogs via multiple injections of 96% ethanol (total dose 1 mL/kg), all over the inlet and trabecular RV free walls. Hemodynamic and metabolic parameters were evaluated at baseline, after ethanol injection, and on the 14th postoperative day (POD). Echocardiographic parameters were evaluated at baseline, on the sixth POD, and on the 13th POD. The animals were then euthanized for histopathological analysis of the hearts. There was a 15.4% mortality rate. We noticed a decrease in pulmonary blood flow right after RV failure (P = 0.0018), as well as during reoperation on the 14th POD (P = 0.002). The induced RV dysfunction caused an increase in venous lactate levels immediately after ethanol injection and on the 14th POD (P < 0.0003). The echocardiogram revealed a decrease in the RV ejection fraction on the sixth and 13th PODs (P = 0.0001). There was an increased RV end-diastolic volume on the sixth (P = 0.0001) and 13th PODs (P = 0.0084). The right ventricle showed a 74% +/- 0.06% transmural infarction area, with necrotic lesions aged 14 days. Intramyocardial ethanol injection has allowed the creation of a reproducible and inexpensive model of RV failure. The hemodynamic, metabolic, and echocardiographic parameters assessed at different protocol times are compatible with severe RV failure. This model may be useful in understanding the pathophysiology of isolated right-sided heart failure, as well as in the assessment of ventricular assist devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Organs from the so-called marginal donors have been used with a significant higher risk of primary non function than organs retrieved from the optimal donors. We investigated the early metabolic changes and blood flow redistribution in splanchnic territory in an experimental model that mimics marginal brain-dead (BD) donor. Material/Methods: Ten dogs (21.3 +/- 0.9 kg), were subjected to a brain death protocol induced by subdural balloon inflation and observed for 30 min thereafter without ally additional interventions. Mean arterial and intracranial pressures, heart rate, cardiac output (CO), portal vein and hepatic artery blood flows (PVBF and HABF, ultrasonic flowprobe), and O(2)-derived variables were evaluated. Results: An increase in arterial pressure, CO, PVBF and HABF was observed after BD induction. At the end, an intense hypotension with normalization in CO (3.0 +/- 0.2 VS. 2.8 +/- 2.8 L/min) and PVBF (687 +/- 114 vs. 623 +/- 130 ml/min) was observed, whereas HABF (277 33 vs. 134 28 ml/min, p<0.005) remained lower than baseline values. Conclusions: Despite severe hypotension induced by sudden increase of intracranial pressure, the systemic and splanchnic blood flows were partially preserved without signs of severe hypoperfusion (i.e. hyperlactatemia). Additionally, the HABF was mostly negatively affected in this model of marginal BD donor. Our data suggest that not only the cardiac output, but the intrinsic hepatic microcirculatory mechanism plays a role in the hepatic blood flow control after BD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To estimate the effects of combined spinal-epidural and traditional epidural analgesia on uterine basal tone and its association with the occurrence of fetal heart rate (FHR) abnormalities. METHODS: Seventy-seven laboring patients who requested pain relief during labor were randomly assigned to combined spinal-epidural (n=41) or epidural analgesia (n=36). Uterine contractions and FHR were recorded 15 minutes before and after analgesia. Uterine tone was evaluated with intrauterine pressure catheter. Primary outcomes were the elevation of baseline uterine tone and occurrence of FHR prolonged decelerations or bradycardia after analgesia. The influence of other variables such as oxytocin use, hypotension, and speed of pain relief were estimated using a logistic regression model. RESULTS: The incidence of all outcomes was significantly greater in the combined spinal-epidural group compared with epidural: uterine hypertonus (17 compared with 6; P=.018), FHR abnormalities (13 compared with 2; P<.01), and both events simultaneously (11 compared with 1; P<.01). Logistic regression analysis showed the type of analgesia as the only independent predictor of uterine hypertonus (odds ratio 3.526, 95% confidence interval 1.21-10.36; P=.022). For the occurrence of FHR abnormalities, elevation of uterine tone was the independent predictor (odds ratio 18.624, 95% confidence interval 4.46-77.72; P<.001). Regression analysis also found a correlation between decrease on pain scores immediately after analgesia and the estimated probability of occurrence of hypertonus and FHR abnormalities. CONCLUSION: Combined spinal-epidural analgesia is associated with a significantly greater incidence of FHR abnormalities related to uterine hypertonus compared with epidural analgesia. The faster the pain relief after analgesia, the higher the probability of uterine hypertonus and FHR changes. CLINICAL TRIAL REGISTRATION: Umin Clinical Trials Registry, http://www.umin.ac.jp/ctr/index.htm, UMIN000001186

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Changes in the shape of the capnogram may reflect changes in lung physiology. We studied the effect of different ventilation/perfusion ratios (V/Q) induced by positive end-expiratory pressures (PEEP) and lung recruitment on phase III slope (S(III)) of volumetric capnograms. Methods Seven lung-lavaged pigs received volume control ventilation at tidal volumes of 6 ml/kg. After a lung recruitment maneuver, open-lung PEEP (OL-PEEP) was defined at 2 cmH(2)O above the PEEP at the onset of lung collapse as identified by the maximum respiratory compliance during a decremental PEEP trial. Thereafter, six distinct PEEP levels either at OL-PEEP, 4 cmH(2)O above or below this level were applied in a random order, either with or without a prior lung recruitment maneuver. Ventilation-perfusion distribution (using multiple inert gas elimination technique), hemodynamics, blood gases and volumetric capnography data were recorded at the end of each condition (minute 40). Results S(III) showed the lowest value whenever lung recruitment and OL-PEEP were jointly applied and was associated with the lowest dispersion of ventilation and perfusion (Disp(R-E)), the lowest ratio of alveolar dead space to alveolar tidal volume (VD(alv)/VT(alv)) and the lowest difference between arterial and end-tidal pCO(2) (Pa-ETCO(2)). Spearman`s rank correlations between S(III) and Disp(R-E) showed a =0.85 with 95% CI for (Fisher`s Z-transformation) of 0.74-0.91, P < 0.0001. Conclusion In this experimental model of lung injury, changes in the phase III slope of the capnograms were directly correlated with the degree of ventilation/perfusion dispersion.