597 resultados para Electrochemical Corrosion


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Artigo completo publicado na revista "Journal of The Electrochemical Society" 160:10 (2013) 467-479 e disponível no RepositóriUM em: http://hdl.handle.net/1822/33855

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Artigo completo publicado na revista "Journal of The Electrochemical Society" 161:6 (2014) C349-C362 e disponível no RepositóriUM em: http://hdl.handle.net/1822/33784

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Artigo completo publicado na revista "Journal of The Electrochemical Society" 161:6 (2014) C349-C362 e disponível no RepositóriUM em: http://hdl.handle.net/1822/33784. Errata disponível no RepositóriUM em: http://hdl.handle.net/1822/40064. (Publisher’s note: An erratum that addressed the errors in Figure 9 was originally published on Dec. 10, 2014, however the graphs in that erratum were not correct.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of this study is to determine the effectiveness of the Electrochemical Chloride Extraction (ECE) technique on a bridge deck with very high concentrations of chloride. This ECE technique was used during the summer of 2003 to reverse the effects of corrosion, which had occurred in the reinforcing steel embedded in the pedestrian bridge deck over Highway 6, along Iowa Avenue, in Iowa City, Iowa, USA. First, the half cell potential was measured to determine the existing corrosion level in the field. The half-cell potential values were in the indecisive range of corrosion (between -200 mV and -350 mV). The ECE technique was then applied to remove the chloride from the bridge deck. The chloride content in the deck was significantly reduced from 25 lb/cy to 4.96 lb/cy in 8 weeks. Concrete cores obtained from the deck were measured for their compressive strengths and there was no reduction in strength due to the ECE technique. Laboratory tests were also performed to demonstrate the effectiveness of the ECE process. In order to simulate the corrosion in the bridge deck, two reinforced slabs and 12 reinforced beams were prepared. First, the half-cell potentials were measured from the test specimens and they all ranged below -200 mV. Upon introduction of 3% salt solution, the potential reached up to -500 mV. This potential was maintained while a salt solution was being added for six months. The ECE technique was then applied to the test specimens in order to remove the chloride from them. Half-cell potential was measured to determine if the ECE technique can effectively reduce the level of corrosion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The corrosion resistance of the new Ti-6Al-4V-1Zr alloy in comparison with ternary Ti-6Al-4V alloy in Ringer-Brown solution and artificial Carter-Brugirard saliva of different pH values was studied. In Ringer-Brown solution, the new alloy presented an improvement of all electrochemical parameters due to the alloying with Zr; also, impedance spectra revealed better protective properties of its passive layer. In Carter-Brugirard artificial saliva, an increase of the passive film thickness was proved. Fluoride ions had a slight negative influence on the corrosion and ion release rates, without to affect the very good stability of the new Ti-6Al-4V-1Zr alloy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cellular metals are a new class of materials with promising applications and a unique combination of physical, chemical and mechanical properties. The Al-356 alloy is used to manufacture metal foams from NaCl preforms. Despite the usefulness of these materials, their performance may be affected by corrosion due to residual salt. This paper reports the study of the behavior of the Al-356 alloy in chloride solutions by electrochemical techniques in rotating disk electrode. The cathodic reaction of oxygen reduction is the crucial stage of process dissolution of the material, which shows that is the oxygen transport which limits the corrosion process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The primary aim of these investigations was to probe the elecnuchemical and material science aspects of some selected metal phthalocyanines(MPcs).Metal phthalocyanines are characterised by a unique planar molecular structure. As a single class of compounds they have been the subject of ever increasing number of physicochemical and technological investigations. During the last two decades the literature on these compounds was flooded by an outpour of original publications and patents. Almost every branch of materials science has benefited by their application-swface coating, printing, electrophotography, photoelectrochemistry, electronics and medicine to name a few.The present study was confined to the electrical and electrochemical properties of cobalt, nickel, zinc. iron and copper phthalocyanines. The use of soluble Pes as corrosion inhibitor for aluminium was also investigated.In the introductory section of the thesis, the work done so far on MPcs is reviewed. In this review emphasis is given to their general methods of synthesis and the physicochemical properties.In phthalocyanine chemistry one of the formidable tasks is the isolation of singular species. In the second chapter the methods of synthesis and purification are presented with necessary experimental details.The studies on plasma modified films of CoPe, FePc, ZnPc. NiPc and CuPc are also presented.Modification of electron transfer process by such films for reversible redox systems is taken as the criterion to establish enhanced electrocatalytic activity.Metal phthalocyanines are p- type semiconductors and the conductivity is enhanced by doping with iodine. The effect of doping on the activation energy of the conduction process is evaluated by measuring the temperature dependent variation of conductivity. Effect of thennal treatment on iodine doped CoPc is investigated by DSC,magnetic susceptibility, IR, ESR and electronic spectra. The elecnucatalytic activity of such doped materials was probed by cyclic voltammetry.The electron transfer mediation characteristics of MPc films depend on the film thickness. The influence of reducing the effective thickness of the MPc film by dispersing it into a conductive polymeric matrix was investigated. Tetrasulphonated cobalt phthalocyanine (CoTSP) was electrostatically immobilised into polyaniline and poly(o-toluidine) under varied conditions.The studies on corrosion inhibition of aluminium by CoTSP and CuTSP and By virtue of their anionic character they are soluble in water and are strongly adsorbed on aluminium. Hence they can act as corrosion inhibitors. CoTSP is also known to catalyze the reduction of dioxygen.This reaction can accelerate the anodic dissolution of metal as a complementary reaction. The influence of these conflicting properties of CoTSP on the corrosion of aluminium was studied and compared with those of CuTSP.In the course of these investigations a number of gadgets like cell for measuring the electrical conductivity of solids under non-isothermal conditions, low power rf oscillator and a rotating disc electrode were fabricated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biocompatibility of commercially pure (cp) titanium stems from its chemical stability within an organism, due to a fine film of impermeable titanium oxide covering the metal surface, which guarantees its resistance to corrosion. Despite its biocompatible characteristic, this material does not promote the formation of a hydroxyapatite layer, therefore, many research groups have sought to alter the material`s surface, introducing modifications that might influence corrosion resistance. The electrochemical behavior of cp Ti, with hydroxyapatite coating and without hydroxyapatite coating, commonly used in implant materials, was investigated using an artificial saliva solution at 25 degrees C and pH=7.4. In the conditions of the study it was observed that the hydroxyapatite layer influences the properties of corrosion resistance. This study of the behavior of cp Ti with and without hydroxyapatite coating, in naturally aerated artificial saliva solution at 25 degrees C, was based on open circuit potential measurements and potentiodynamic polarization curves. At approximately 1x10(-6) A/cm(2) the potential for cp Ti with and without hydroxyapatite coating begins to increase at a faster rate, but at -74mV (SCE) for coated cp Ti and at 180mV (SCE) for uncoated cp Ti the increase in potential begins to slow. This behavior, characterized by a partial stabilization of current density, indicates that in those potential ranges a protective passive film is formed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nickel, a component of stainless steels (SS) applied in orthopedic implants may cause allergic processes in human tissues P558 nickel free SS was studied to verify its viability as a substitute for stainless steel containing nickel Its performance is compared to ISO 5832-9 and F138 most used nowadays grades in implants fabrications, in minimum essential medium. MEM, at 37 degrees C. Potentiodynamic polarization curves, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and ""in vitro"" cytotoxicity were used as techniques. From the electrochemical point of view P558 SS is comparable to ISO 5832-9 SS in MEM It remains passivated until the transpassivation potential, above which generalized corrosion occurs F138 presents pitting corrosion at 370 mV/SCE. The cytotoxicity results showed that P558. ISO 5832-9 and F138 do not present cytotoxic character Therefore, these results suggest that P558 SS can be applied in orthopedic implants (C) 2010 Elsevier BV All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical behavior of ISO 5832-9 stainless steel at 37 degrees C in 0.9% NaCl, Ringer Lactate and minimum essential medium (MEM) has been studied, using linear voltammetry, and surface analysis by SEM and EDS. Mechanical and toxicity tests were made. ISO 5832-9 is passivated at corrosion potential (E) and it does not present pitting corrosion on the media studied from to 50 in V above the transpassivation potential (Ei). SEM and EDS analysis have shown that the sample previously immersed in MEM presents a diffirent behavior at 50 in V above El: the manganese oxide inclusions are absent in the surface. E. values and passivation current density values j(pass) changed according to the following. E(corr, RL) < E(corr,NaCl) < E(corr, MEM) and J (MEM) << j(RL) congruent to j(NaCl) The stainless steel was characterized as non toxic in the cytotoxicity assay

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of benzotriazole (BTAH) and tolytriazole (TTAH) on the electrochemical behaviour of the Fe/0.5 mol L(-1) H(2)SO(4) interface at 25 degrees C was studied using cronopotentiometry, anodic and cathodic polarization curves and electrochemical impedance spectroscopy. BTAH and TTAH are inhibitors of anodic iron dissolution and the subsequent hydrogen evolution in 0.5 mol L(-1) H(2)SO(4) medium. Mass transport is an important step in the anodic process of inhibitive film formation. Electrochemical impedance spectroscopy was used to investigate the iron dissolution mechanism in the presence of the inhibitors and showed that BTAH and TTAH are adsorbed on the iron surface, thereby changing its dissolution mechanism in sulfate media. Starting from an iron dissolution model, it was possible to suggest two different mechanisms for iron dissolution in 0.5 mol L(-1) H(2)SO(4) containing BTAH or TTAH that involve a complex Fe(II)-inhibitor. (C) 2009 Elsevier B.V. All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Corrosion is an undesirable process that occurs in metallic materials. Studied was the effect of inhibiting Benzotriazole (BTAH), Benzimidazole (BZM) and Indole in different concentrations-for the stainless steel (SS) AISI 430 in H(2)SO(4) mol The techniques employed this research were: anodic potenciostatic polarisation, electrochemical impedance spectroscopy, optical microscopy and scanning electron microscopy The curves of anodic polarisation showed that BTAH, BZM and Indol act as corrosion inhibitors for 430 SS, at concentrations of 1x10(-3) and 5x10(-4) mol L(-1) but do not inhibit corrosion for concentrations equal to or less than 1x10(-4) mol L(-1). The in-crease of the efficiency in relation to the inhibitory substances studied followed this order: Indol electrochemical impedance spectroscopy, and microscopic analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amino acids and self assembled monolayers (SAM`s) have been studied as to their inhibiting action on the corrosion of metallic materials. The objective of work is to study the electrochemical behavior of the cisteincisteine, the diphosfonate and the mixture of both in inhibiting the action of corrosion on stainless steel 304 in HCl 1 molL(-1). As the following techniques were used: open circuit potential (OCP), potenciostatic anodic polarization (A P), chronoamperomeny (CA), electrochemical impedance spectroscopy (EIS) and optical microscopy (OM). The results of CA showed that cisteine has a double effect, catalytic and inhibiting, in function of the immersion time of the metallic part in the electrolytic solution. AP curves have shown lesser current density for the system containing cisteine diphosfonate suggesting an inhibiting synergic action. These results have been confirmed by EIS and OM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, Mg-Ni-based metastable alloys have been attracting attention due to their large hydrogen sorption capacities, low weight, low cost, and high availability. Despite the large discharge capacity and high activity of these alloys, the accelerated degradation of the discharge capacity after only few cycles of charge and discharge is the main shortcoming against their commercial use in batteries. The addition of alloying elements showed to be an effective way of improving the electrode performance of Mg-Ni-based alloys. In the present work, the effect of Ti and Pt alloying elements on the structure and electrode performance of a binary Mg-Ni alloy was investigated. The XRD and HRTEM revealed that all the investigated alloy compositions had multi-phase nanostructures, with crystallite size in the range of 6 nm. Moreover, the investigated alloying elements demonstrated remarkable improvements of both maximum discharge capacity and cycling life. Simultaneous addition of Ti and Pd demonstrated a synergetic effect on the electrochemical properties of the alloy electrodes. Among the investigated alloys, the best electrochemical performance was obtained for the Mg(51)Ti(4)Ni(43)Pt(2) composition (in at.%), which achieved 448 mAh g(-1) of maximum discharge capacity and retained almost 66% of this capacity after 10 cycles. In contrast, the binary Mg(55)Ni(45) alloy achieved only 248 mAh g(-1) and retained 11% of this capacity after 10 cycles. (C) 2010 Elsevier By. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical characteristics of the AA2024 aluminium alloy modified with octadecyltrimethoxysilane (ODTMS) + polyaniline (PANi) and propiltrimethoxysilane (PTMS) + (PANi) were studied in the present work. The results show that the different protective coatings shift the values of corrosion and pit potentials to more positive values making the system nobler and indicate that the double film ODTMS + PANi present the best protection against corrosion characteristics, that is probably due to the two contributions: anodic protection associated with the barrier effect.