969 resultados para Electrical submersible pumping. Automation. Control. Artificial lift


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an alternative solution to the conventional cruise controller of a hybrid electric vehicle based on the sliding mode control approach. The mathematical model of a hybrid electric vehicle cruise control system is developed. Then, the sliding mode control approach is applied as the controller. The sliding mode control stability is investigated and demonstrated. Thereafter, the system is simulated and the results are presented. © 2014 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we derive a new inequality, which encompasses the discrete Jensen inequality. The new inequality is applied to analyze stability of linear discrete systems with an interval time-varying delay and a less conservative stability condition is obtained. Two numerical examples are given to show the effectiveness of the obtained stability condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neural networks (NNs) are an effective tool to model nonlinear systems. However, their forecasting performance significantly drops in the presence of process uncertainties and disturbances. NN-based prediction intervals (PIs) offer an alternative solution to appropriately quantify uncertainties and disturbances associated with point forecasts. In this paper, an NN ensemble procedure is proposed to construct quality PIs. A recently developed lower-upper bound estimation method is applied to develop NN-based PIs. Then, constructed PIs from the NN ensemble members are combined using a weighted averaging mechanism. Simulated annealing and a genetic algorithm are used to optimally adjust the weights for the aggregation mechanism. The proposed method is examined for three different case studies. Simulation results reveal that the proposed method improves the average PI quality of individual NNs by 22%, 18%, and 78% for the first, second, and third case studies, respectively. The simulation study also demonstrates that a 3%-4% improvement in the quality of PIs can be achieved using the proposed method compared to the simple averaging aggregation method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a novel general framework for line segment perception, which is motivated by a biological visual cortex, and requires no parameter tuning. In this framework, we design a model to approximate receptive fields of simple cells. More importantly, the structure of biological orientation columns is imitated by organizing artificial complex and hypercomplex cells with the same orientation into independent arrays. Besides, an interaction mechanism is implemented by a set of self-organization rules. Enlightened by the visual topological theory, the outputs of these artificial cells are integrated to generate line segments that can describe nonlocal structural information of images. Each line segment is evaluated quantitatively by its significance. The computation complexity is also analyzed. The proposed method is tested and compared to state-of-the-art algorithms on real images with complex scenes and strong noises. The experiments demonstrate that our method outperforms the existing methods in the balance between conciseness and completeness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a nonlinear robust adaptive excitation controller design for a simple power system model where a synchronous generator is connected to an infinite bus. The proposed controller is designed to obtain the adaption laws for estimating critical parameters of synchronous generators which are considered as unknown while providing the robustness against the bounded external disturbances. The convergence of different physical quantities of a single machine infinite bus (SMIB) system, with the proposed control scheme, is ensured through the negative definiteness of the derivative of Lyapunov functions. The effects of external disturbances are considered during formulation of Lyapunov function and thus, the proposed excitation controller can ensure the stability of the SMIB system under the variation of critical parameters as well as external disturbances including noises. Finally, the performance of the proposed scheme is investigated with the inclusion of external disturbances in the SMIB system and its superiority is demonstrated through the comparison with an existing robust adaptive excitation controller. Simulation results show that the proposed scheme provides faster responses of physical quantities than the existing controller.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Partial state estimation of dynamical systems provides significant advantages in practical applications. Likewise, pre-compensator design for multi variable systems invokes considerable increase in the order of the original system. Hence, applying functional observer to pre-compensated systems can result in lower computational costs and more practicability in some applications such as fault diagnosis and output feedback control of these systems. In this note, functional observer design is investigated for pre-compensated systems. A lower order pre-compensator is designed based on a H2 norm optimization that is designed as the solution of a set of linear matrix inequalities (LMIs). Next, a minimum order functional observer is designed for the pre-compensated system. An LTI model of an irreversible chemical reactor is used to demonstrate our design algorithm, and to highlight the benefits of the proposed schemes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The direct approach in designing functional observers was first presented in [1] for estimating a single function of the states of a Linear Time-Invariant (LTI) system. One of the benefits of the direct scheme is that it does not require solving the interconnected Sylvester equations that appear in the other observer design approaches. In the present paper, the direct approach is extended to reconstruct multiple functions of the states in such a way that the minimum possible order of the observer is achieved. The observer is designed so that an asymptotic functional observer can be obtained with arbitrary convergence rate. In the proposed methodology, it is not necessary that a reduced order observer exists for the desired functions to be estimated. To release this limitation, an algorithm is employed to find some auxiliary functions in the minimum required number to be appended to the desired functions. This method assumes that the system is functional observable. This assumption however is less restrictive than the observability and detectability conditions of the system. A numerical example and simulation results explain the efficacy and the benefits of the proposed algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The artificial lifting of oil is needed when the pressure of the reservoir is not high enough so that the fluid contained in it can reach the surface spontaneously. Thus the increase in energy supplies artificial or additional fluid integral to the well to come to the surface. The rod pump is the artificial lift method most used in the world and the dynamometer card (surface and down-hole) is the best tool for the analysis of a well equipped with such method. A computational method using Artificial Neural Networks MLP was and developed using pre-established patterns, based on its geometry, the downhole card are used for training the network and then the network provides the knowledge for classification of new cards, allows the fails diagnose in the system and operation conditions of the lifting system. These routines could be integrated to a supervisory system that collects the cards to be analyzed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to develop a pilot plant which the main goal is to emulate a flow peak pressure in a separation vessel. Effect similar that is caused by the production in a slug flow in production wells equipped with the artificial lift method plunger lift. The motivation for its development was the need to test in a plant on a smaller scale, a new technique developed to estimate the gas flow in production wells equipped with plunger lift. To develop it, studies about multiphase flow effects, operation methods of artificial lift in plunger lift wells, industrial instrumentation elements, control valves, vessel sizing separators and measurement systems were done. The methodology used was the definition of process flowcharts, its parameters and how the effects needed would be generated for the success of the experiments. Therefore, control valves, the design and construction of vessels and the acquisition of other equipment used were defined. One of the vessels works as a tank of compressed air that is connected to the separation vessel and generates pulses of gas controlled by a on/off valve. With the emulator system ready, several control experiments were made, being the control of peak flow pressure generation and the flow meter the main experiments, this way, it was confirmed the efficiency of the plant usage in the problem that motivated it. It was concluded that the system is capable of generate effects of flow with peak pressure in a primary separation vessel. Studies such as the estimation of gas flow at the exit of the vessel and several academic studies can be done and tested on a smaller scale and then applied in real plants, avoiding waste of time and money.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The method of artificial lift of progressing cavity pump is very efficient in the production of oils with high viscosity and oils that carry a great amount of sand. This characteristic converted this lift method into the second most useful one in oil fields production. As it grows the number of its applications it also increases the necessity to dominate its work in a way to define it the best operational set point. To contribute to the knowledge of the operational method of artificial lift of progressing cavity pump, this work intends to develop a computational simulator for oil wells equipped with an artificial lift system. The computational simulator of the system will be able to represent its dynamic behavior when submitted to the various operational conditions. The system was divided into five subsystems: induction motor, multiphase flows into production tubing, rod string, progressing cavity pump and annular tubing-casing. The modeling and simulation of each subsystem permitted to evaluate the dynamic characteristics that defined the criteria connections. With the connections of the subsystems it was possible to obtain the dynamic characteristics of the most important arrays belonging to the system, such as: pressure discharge, pressure intake, pumping rate, rod string rotation and torque applied to polish string. The shown results added to a friendly graphical interface converted the PCP simulator in a great potential tool with a didactic characteristic in serving the technical capability for the system operators and also permitting the production engineering to achieve a more detail analysis of the dynamic operational oil wells equipped with the progressing cavity pump

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A critical problem in mature gas wells is the liquid loading. As the reservoir pressure decreases, gas superficial velocities decreases and the drag exerted on the liquid phase may become insufficient to bring all the liquid to the surface. Liquid starts to drain downward, flooding the well and increasing the backpressure which decreases the gas superficial velocity and so on. A popular method to remedy this problem is the Plunger Lift. This method consists of dropping the "plunger"to the bottom of the tubing well with the main production valve closed. When the plunger reaches the well bottom the production valve is opened and the plunger carry the liquid to the surface. However, models presented in literature for predicting the behavior in plunger lift are simplistic, in many cases static (not considering the transient effects). Therefore work presents the development and validation of a numerical algorithm to solve one-dimensional compressible in gas wells using the Finite Volume Method and PRIME techniques for treating coupling of pressure and velocity fields. The code will be then used to develop a dynamic model for the plunger lift which includes the transient compressible flow within the well

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the emergence of other forms of artificial lift, sucker rod pumping systems remains hegemonic because of its flexibility of operation and lower investment cost compared to other lifting techniques developed. A successful rod pumping sizing necessarily passes through the supply of estimated flow and the controlled wear of pumping equipment used in the mounted configuration. However, the mediation of these elements is particularly challenging, especially for most designers dealing with this work, which still lack the experience needed to get good projects pumping in time. Even with the existence of various computer applications on the market in order to facilitate this task, they must face a grueling process of trial and error until you get the most appropriate combination of equipment for installation in the well. This thesis proposes the creation of an expert system in the design of sucker rod pumping systems. Its mission is to guide a petroleum engineer in the task of selecting a range of equipment appropriate to the context provided by the characteristics of the oil that will be raised to the surface. Features such as the level of gas separation, presence of corrosive elements, possibility of production of sand and waxing are taken into account in selecting the pumping unit, sucker-rod strings and subsurface pump and their operation mode. It is able to approximate the inferente process in the way of human reasoning, which leads to results closer to those obtained by a specialist. For this, their production rules were based on the theory of fuzzy sets, able to model vague concepts typically present in human reasoning. The calculations of operating parameters of the pumping system are made by the API RP 11L method. Based on information input, the system is able to return to the user a set of pumping configurations that meet a given design flow, but without subjecting the selected equipment to an effort beyond that which can bear

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The linear quadratic Gaussian control of discrete-time Markov jump linear systems is addressed in this paper, first for state feedback, and also for dynamic output feedback using state estimation. in the model studied, the problem horizon is defined by a stopping time τ which represents either, the occurrence of a fix number N of failures or repairs (T N), or the occurrence of a crucial failure event (τ δ), after which the system paralyzed. From the constructive method used here a separation principle holds, and the solutions are given in terms of a Kalman filter and a state feedback sequence of controls. The control gains are obtained by recursions from a set of algebraic Riccati equations for the former case or by a coupled set of algebraic Riccati equation for the latter case. Copyright © 2005 IFAC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)