939 resultados para Electric Quantities, Properties and Effects.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We discuss the properties of the gravitational energy-momentum 3-form within the tetrad formulation of general relativity theory. We derive the covariance properties of the quantities describing the energy-momentum content under Lorentz transformations of the tetrad. As an application, we consider the computation of the total energy (mass) of some exact solutions of Einstein's general relativity theory which describe compact sources with asymptotically flat spacetime geometry. As it is known, depending on the choice of tetrad frame, the formal total integral for such configurations may diverge. We propose a natural regularization method which yields finite values for the total energy-momentum of the system and demonstrate how it works on a number of explicit examples.
Resumo:
In this work we propose the study of the spectroscopy properties and the energy level location of Ce(3+) and Pr(3+) in Gd(2)O(2)S, along with the effects of Ce(4+) (Ce(2)O(2)S(2)) incorporation in Gd(2)O(2)S and Gd(2)O(2)S: Pr(3+) in order to understand the formation and position of the associated defects energy levels in relation to the band structure of Gd(2)O(2)S and Pr(3+) energy levels. Ce-, Pr(3+)-doped and Pr(3+), Ce-doped Gd(2)O(2)S were prepared by the sulfidization of a basic gadolinium carbonate with S(8) using H(2)/N(2) (3.0/97.0%) and air during the firing of the precursor. Samples were analyzed by X-ray diffraction in order to guarantee the formation of the Gd(2)O(2)S single phase. Diffuse reflectance spectroscopy and luminescent measurements (emission/excitation) were used to locate Ce(3+), Pr(3+) and defects energy levels in relation to the band structure of Gd(2)O(2)S. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
Electro-optical properties of sol-gel derived 2 mol% antimony or niobium doped tin dioxide films have been measured. The electron density has been calculated considering all the relevant scattering mechanisms and experimental conductivity data measured in the range -197 to 25 degrees C. The results support the hypothesis that both ionised impurity scattering and grain boundary scattering have comparable effects in the resistivity of coatings, for free electron density congruent to 5 x 10(18) cm(-3). We have measured variation of photoconductivity excitation with wavelength using xenon and deuterium lamp as light sources. Results show that the main band in the photoconductivity spectrum is dependent on the spectral light source emission, the excitation peak reaching 5 eV (deuterium lamp). This band is due to the recombination process involving oxygen species and photogenerated electron-hole pairs. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
Equatorial F region vertical plasma drifts, spread F and anomaly responses, in the south American longitude sector during the superstorm of 30 October 2003, are analyzed using data from an array of instruments consisting of Digisondes, a VHF radar, GPS TEC and scintillation receivers in Brazil, and a Digisonde and a magnetometer in Jicamarca, Peru. Prompt penetrating eastward electric field of abnormally large intensity drove the F layer plasma up at a velocity ∼1200 ms -1 during post dusk hours in the eastern sector over Brazil. The equatorial anomaly was intensified and expanded poleward while the development of spread F/plasma bubble irregularities and GPS signal scintillations were weaker than their quiet time intensity. Significantly weaker F region response over Jicamarca presented a striking difference in the intensity of prompt penetration electric field between Peru and eastern longitudes of Brazil. The enhanced post dusk sector vertical drift over Brazil is attributed to electro-dynamics effects arising energetic particle precipitation in the South Atlantic Magnetic Anomaly (SAMA). These extraordinary results and their longitudinal differences are presented and discussed in this paper. Copyright 2008 by the American Geophysical Union.
Resumo:
Purpose: The aim of this study was to evaluate the effectiveness of disinfectant solutions (1% sodium hypochlorite, 2% chlorhexidine digluconate, 2% glutaraldehyde, 100% vinegar, tabs of sodium perborate-based denture cleanser, and 3.8% sodium perborate) in the disinfection of acrylic resin specimens (n = 10/group) contaminated in vitro by Candida albicans, Streptococcus mutans, S. aureus, Escherichia coli, or Bacillus subtilis as measured by residual colony-forming unit (CFU). In a separate experiment, acrylic resin was treated with disinfectants to monitor potential effects on surface roughness, Ra (μm), which might facilitate microbial adherence. Materials and Methods: Three hundred fifty acrylic resin specimens contaminated in vitro with 1×10 6 cells/ml suspensions of standard strains of the cited microorganisms were immersed in the disinfectants for 10 minutes; the control group was not submitted to any disinfection process. Final counts of microorganisms per ml were performed by plating method for the evaluation of microbial level reduction. Results were compared statistically by ANOVA and Tukey's test (p ≤ 0.05). In a parallel study aiming to evaluate the effect of the tested disinfectant on resin surface, 60 specimens were analyzed in a digital rugosimeter before and after ten cycles of 10-minute immersion in the disinfectants. Measurements of superficial roughness, Ra (μm), were compared statistically by paired t-test (p ≤ 0.05). Results: The results showed that 1% sodium hypochlorite, 2% glutaraldehyde, and 2% chlorhexidine digluconate were most effective against the analyzed microorganisms, followed by 100% vinegar, 3.8% sodium perborate, and tabs of sodium perborate-based denture cleanser. Superficial roughness of the specimens was higher after disinfection cycles with 3.8% sodium perborate (p = 0.03) and lower after the cycles with 2% chlorhexidine digluconate (p = 0.04). Conclusion: Within the limits of this experiment, it could be concluded that 1% sodium hypochlorite, 2% glutaraldehyde, 2% chlorexidine, 100% vinegar, and 3.8% sodium perborate are valid alternatives for the disinfection of acrylic resin. © 2008 by The American College of Prosthodontists.
Resumo:
New titanium alloys have been developed with the aim of utilizing materials with better properties for application as biomaterials, and Ti-Zr system alloys are among the more promising of these. In this paper, the influence of zirconium concentrations on the structure, microstructure, and selected mechanical properties of Ti-Zr alloys is analyzed. After melting and swaging, the samples were characterized through chemical analysis, density measurements, X-ray diffraction, optical microscopy, Vickers microhardness, and elasticity modulus. In-vitro cytotoxicity tests were performed on cultured osteogenic cells. The results showed the formation essentially of the α′ phase (with hcp structure) and microhardness values greater than cp-Ti. The elasticity modulus of the alloys was sensitive to the zirconium concentrations while remaining within the range of values of conventional titanium alloys. The alloys presented no cytotoxic effects on osteoblastic cells in the studied conditions. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Alfven eigenmodes (AEs) were studied in neutral beam injection (NBI) heated plasmas in the TJ-II stellarator using a heavy ion beam probe (HIBP) in the core, and by Langmuir (LP) and Mirnov probes (MP) at the edge. AEs were detected over the whole plasma radius by the HIBP with a spatial resolution of about 1 cm. AE-induced oscillations were detected in the plasma density n(e), electric potential phi and poloidal magnetic field B-pol with frequencies 50 kHz < f(AE) < 300 kHz. The LP, MP and HIBP data showed a high level of coherency for specific branches of AEs. Poloidal mode wave-vectors k(theta), mode numbers m (m < 8) and propagation velocities V-theta similar to 30 km s(-1) were detected for various branches of AEs, having different radial locations. When the density rose due to NBI fuelling, the AE frequency decreased as predicted by the Alfven law f(AE) similar to n(e)(-1/2). During the AE frequency decay the following new AE features were observed: (i) the poloidal wave-vector k(theta) and mode number m remained constant, (ii) the cross-phases between the oscillations in B-pol, n(e) and electric potential remained constant, having an individual value for each AE branch, (iii) V-theta decreased proportional to the AE frequency. The interaction of the AEs with the bulk (thermal) plasma resulted in clearly pronounced quasi-coherent peaks in the electrostatic turbulent particle flux spectra. Various AE branches exhibited different contributions to the particle flux: outward, inward and also zero, depending on the phase relations between the oscillations in E-pol and n(e), which are specific for each branch. A comparison with MHD mode modelling indicated that some of the more prominent frequency branches can be identified as radially extended helical AEs.
Resumo:
Purpose: This study aimed to investigate the antimicrobial properties and cytotoxicity of the monomer methacryloyloxyundecylpyridinium bromide (MUPB), an antiseptic agent capable of copolymerizing with denture base acrylic resins. Materials and Methods: The antimicrobial activity of MUPB was tested against the species Candida albicans, Candida dubliniensis, Candida glabrata, Lactobacillus casei, Staphylococcus aureus, and Streptococcus mutans. The minimum inhibitory and fungicidal/bactericidal concentrations (MIC, MFC/MBC) of MUPB were determined by serial dilutions in comparison with cetylpyridinium chloride (CPC). The cytotoxic effects of MUPB at concentrations ranging from 0.01 to 1 g/L were assessed by MTT test on L929 cells and compared with methyl methacrylate (MMA). The antimicrobial activity of copolymerized MUPB was tested by means of acrylic resin specimens containing three concentrations of the monomer (0, 0.3, 0.6% w/w). Activity was quantified by means of a disc diffusion test and a quantification of adhered planktonic cells. Statistical analysis employed the Mann-Whitney test for MIC and MFC/MBC, and ANOVA for the microbial adherence test (a= 0.05). Results: MUBP presented lower MIC values when compared with CPC, although differences were significant for C. dubliniensis and S. mutans only (p= 0.046 and 0.043, respectively). MFC/MBC values were similar for all species except C. albicans; in that case, MUPB presented significantly higher values (p= 0.046). MUPB presented higher cytotoxicity than MMA for all tested concentrations (p < 0.001) except at 0.01 g/L. Irrespective of the concentration incorporated and species, there was no inhibition halo around the specimens. The incorporation of MUPB influenced the adhesion of C. albicans only (p= 0.003), with lower CFU counts for the 0.6% group. Conclusions: It was concluded that non-polymerized MUPB has an antimicrobial capacity close to that of CPC and high cytotoxicity when compared with MMA. The antimicrobial activity of MUPB after incorporation within a denture base acrylic resin did not depend on its elution, but was shown to be restricted to C. albicans.
Resumo:
Photosensitizers (PS) photodynamic activities are regulated by their location in the biological target, which modulates their photophysical and photochemical features. In this work the PS partition for the Xanthene Dyes Fluorescein (FSC), Eosin Y(EOS), Erythrosin B (ERY) and Rose Bengal B (RBB) in biomimetic models (SDS, CTAB and Pluronic P-123 micelles) and the effects on their photophysical characteristics are evaluated. The hydrophobic and electrostatic forces that govern the PS-micelle interaction are analyzed. At physiological pH (7.25), the ability of the dianionic protolytic form of the dyes to be positioned into the micelle palisade and its micelle interaction depends not only on the hydrophobicity of the dye but also on the micellar surface charge. The Binding Constants obey exactly the same order of the Partition Coefficients for the dyes in P-123 and CTAB micelles. The Stern-Volmer treatment pointed out that dyes are located inside the micelle, especially ERY and RBB. The magnitude of the dye-micelle interaction increased from SDS, P-123 and finally CTAB micelles due to the charges between dye and micelle, and among the xanthenes, their hydrophobic characteristics. Within the micelle pseudo phase, ERY and RBB are still very efficient photosensitizers exhibiting high quantum yield of singlet oxygen, which turns them very attractive especially with P-123 polymeric system as drug delivery systems in photodynamic therapy. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In this work the numerical coupling of thermal and electric network models with model equations for optoelectronic semiconductor devices is presented. Modified nodal analysis (MNA) is applied to model electric networks. Thermal effects are modeled by an accompanying thermal network. Semiconductor devices are modeled by the energy-transport model, that allows for thermal effects. The energy-transport model is expandend to a model for optoelectronic semiconductor devices. The temperature of the crystal lattice of the semiconductor devices is modeled by the heat flow eqaution. The corresponding heat source term is derived under thermodynamical and phenomenological considerations of energy fluxes. The energy-transport model is coupled directly into the network equations and the heat flow equation for the lattice temperature is coupled directly into the accompanying thermal network. The coupled thermal-electric network-device model results in a system of partial differential-algebraic equations (PDAE). Numerical examples are presented for the coupling of network- and one-dimensional semiconductor equations. Hybridized mixed finite elements are applied for the space discretization of the semiconductor equations. Backward difference formluas are applied for time discretization. Thus, positivity of charge carrier densities and continuity of the current density is guaranteed even for the coupled model.
Resumo:
In my PhD work I concentrated on three elementary questions that are essential to understand the interactions between the different neuronal cell populations in the developing neocortex. The questions regarded the identity of Cajal-Retzius (CR) cells, the ubiquitous expression of glycine receptors in all major cell populations of the immature neocortex, and the role of taurine in the modulation of immature neocortical network activity.rnTo unravel whether CR cells of different ontogenetic origin have divergent functions I investigated the electrophysiological properties of YFP+ (derived from the septum and borders of the pallium) and YFP− CR cells (derived from other neocortical origins). This study demonstrated that the passive and active electrophysiological properties as well as features of GABAergic PSCs and glutamatergic currents are similar between both CR cell populations. These findings suggest that CR cells of different origins most probably support similar functions within the neuronal networks of the early postnatal cerebral cortex.rnTo elucidate whether glycine receptors are expressed in all major cell populations of the developing neocortex I analyzed the functional expression of glycine receptors on subplate (SP) cells. Activation of glycine receptors by glycine, -alanine and taurine elicited membrane responses that could be blocked by the selective glycinergic antagonist strychnine. Pharmacological experiments suggest that SP cells express functional heteromeric glycine receptors that do not contain 1 subunits. The activation of glycine receptors by glycine and taurine induced a membrane depolarization, which mediated excitatory effects. Considering the key role of SP cells in immature cortical networks and the development of thalamocortical connections, this glycinergic excitation may influence the properties of early cortical networks and the formation of cortical circuits.rnIn the third part of my project I demonstrated that tonic taurine application induced a massive increase in the frequency of PSCs. Based on their reversal potential and their pharmacological properties these taurine-induced PSCs are exclusively transmitted via GABAA receptors to the pyramidal neurons, while both GABAA and glycine receptors were implicated in the generation of the presynaptic activity. Accordingly, whole-cell and cell-attached recordings from genetically labeled interneurons revealed the expression of glycine and GABAA receptors, which mediated an excitatory action on these cells. These findings suggest that low taurine concentrations can tonically activate exclusively GABAergic networks. The activity level maintained by this GABAergic activity in the immature nervous system may contribute to network properties and can facilitate the activity dependent formation of adequate synaptic projections.rnIn summary, the results of my studies complemented the knowledge about neuronal interactions in the immature neocortex and improve our understanding of cellular processes that guide neuronal development and thus shape the brain.rn
Resumo:
1H-magnetic resonance spectroscopy ((1)H-MRS) of deoxymyoglobin (DMb) provides a means to noninvasively monitor the oxygenation state of human skeletal muscle in work and disease. As shown in this work, it also offers the opportunity to measure the absolute tissue content of DMb, the basic oxygen consumption of resting muscle, and the reperfusion characteristics after release of a pressure cuff. The methodology to determine these tissue properties simultaneously at two positions along the calf is presented. The obtained values are in agreement with invasive determinations. The reproducibility of the (1)H-MRS measurements is established for healthy controls and patients with peripheral arterial disease (PAD). A location dependence in axial direction, as well as differences between controls and patients are demonstrated for all parameters. The reoxygenation time in particular is expected to provide a means to quantitatively monitor therapies aimed at improving muscular perfusion in these patients.
New fully kinetic model for the study of electric potential, plasma, and dust above lunar landscapes
Resumo:
We have developed a new fully kinetic electrostatic simulation, HYBes, to study how the lunar landscape affects the electric potential and plasma distributions near the surface and the properties of lifted dust. The model embodies new techniques that can be used in various types of physical environments and situations. We demonstrate the applicability of the new model in a situation involving three charged particle species, which are solar wind electrons and protons, and lunar photoelectrons. Properties of dust are studied with test particle simulations by using the electric fields derived from the HYBes model. Simulations show the high importance of the plasma and the electric potential near the surface. For comparison, the electric potential gradients near the landscapes with feature sizes of the order of the Debye length are much larger than those near a flat surface at different solar zenith angles. Furthermore, dust test particle simulations indicate that the landscape relief influences the dust location over the surface. The study suggests that the local landscape has to be taken into account when the distributions of plasma and dust above lunar surface are studied. The HYBes model can be applied not only at the Moon but also on a wide range of airless planetary objects such as Mercury, other planetary moons, asteroids, and nonactive comets.