940 resultados para Efficient image processing
Resumo:
This paper reports image analysis methods that have been developed to study the microstructural changes of non-wovens made by the hydroentanglement process. The validity of the image processing techniques has been ascertained by applying them to test images with known properties. The parameters in preprocessing of the scanning electron microscope (SEM) images used in image processing have been tested and optimized. The fibre orientation distribution is estimated using fast Fourier transform (FFT) and Hough transform (HT) methods. The results obtained using these two methods are in good agreement. The HT method is more demanding in computational time compared with the Fourier transform (FT) method. However, the advantage of the HT method is that the actual orientation of the lines can be concluded directly from the result of the transform without the need for any further computation. The distribution of the length of the straight fibre segments of the fabrics is evaluated by the HT method. The effect of curl of the fibres on the result of this evaluation is shown.
Resumo:
The image analysis techniques developed in Part 1 to study microstructural changes in non-woven fabrics are applied to measure the fibre orientation distribution and fibre length distribution of hydroentangled fabrics. The results are supported by strength and modulus measurements using samples from the same fabrics. It is shown that the techniques developed can successfully be used to assess the degree of entanglement of hydroentangled fabrics regardless of their thickness.
Resumo:
The paper presents IPPro which is a high performance, scalable soft-core processor targeted for image processing applications. It has been based on the Xilinx DSP48E1 architecture using the ZYNQ Field Programmable Gate Array and is a scalar 16-bit RISC processor that operates at 526MHz, giving 526MIPS of performance. Each IPPro core uses 1 DSP48, 1 Block RAM and 330 Kintex-7 slice-registers, thus making the processor as compact as possible whilst maintaining flexibility and programmability. A key aspect of the approach is in reducing the application design time and implementation effort by using multiple IPPro processors in a SIMD mode. For different applications, this allows us to exploit different levels of parallelism and mapping for the specified processing architecture with the supported instruction set. In this context, a Traffic Sign Recognition (TSR) algorithm has been prototyped on a Zedboard with the colour and morphology operations accelerated using multiple IPPros. Simulation and experimental results demonstrate that the processing platform is able to achieve a speedup of 15 to 33 times for colour filtering and morphology operations respectively, with a reduced design effort and time.
Resumo:
With security and surveillance, there is an increasing need to be able to process image data efficiently and effectively either at source or in a large data networks. Whilst Field Programmable Gate Arrays have been seen as a key technology for enabling this, they typically use high level and/or hardware description language synthesis approaches; this provides a major disadvantage in terms of the time needed to design or program them and to verify correct operation; it considerably reduces the programmability capability of any technique based on this technology. The work here proposes a different approach of using optimised soft-core processors which can be programmed in software. In particular, the paper proposes a design tool chain for programming such processors that uses the CAL Actor Language as a starting point for describing an image processing algorithm and targets its implementation to these custom designed, soft-core processors on FPGA. The main purpose is to exploit the task and data parallelism in order to achieve the same parallelism as a previous HDL implementation but avoiding the design time, verification and debugging steps associated with such approaches.
Resumo:
This paper presents a hardware solution for network flow processing at full line rate. Advanced memory architecture using DDR3 SDRAMs is proposed to cope with the flow match limitations in packet throughput, number of supported flows and number of packet header fields (or tuples) supported for flow identifications. The described architecture has been prototyped for accommodating 8 million flows, and tested on an FPGA platform achieving a minimum of 70 million lookups per second. This is sufficient to process internet traffic flows at 40 Gigabit Ethernet.
Resumo:
Power has become a key constraint in current nanoscale integrated circuit design due to the increasing demands for mobile computing and a low carbon economy. As an emerging technology, an inexact circuit design offers a promising approach to significantly reduce both dynamic and static power dissipation for error tolerant applications. Although fixed-point arithmetic circuits have been studied in terms of inexact computing, floating-point arithmetic circuits have not been fully considered although require more power. In this paper, the first inexact floating-point adder is designed and applied to high dynamic range (HDR) image processing. Inexact floating-point adders are proposed by approximately designing an exponent subtractor and mantissa adder. Related logic operations including normalization and rounding modules are also considered in terms of inexact computing. Two HDR images are processed using the proposed inexact floating-point adders to show the validity of the inexact design. HDR-VDP is used as a metric to measure the subjective results of the image addition. Significant improvements have been achieved in terms of area, delay and power consumption. Comparison results show that the proposed inexact floating-point adders can improve power consumption and the power-delay product by 29.98% and 39.60%, respectively.
Resumo:
Field programmable gate array devices boast abundant resources with which custom accelerator components for signal, image and data processing may be realised; however, realising high performance, low cost accelerators currently demands manual register transfer level design. Software-programmable ’soft’ processors have been proposed as a way to reduce this design burden but they are unable to support performance and cost comparable to custom circuits. This paper proposes a new soft processing approach for FPGA which promises to overcome this barrier. A high performance, fine-grained streaming processor, known as a Streaming Accelerator Element, is proposed which realises accelerators as large scale custom multicore networks. By adopting a streaming execution approach with advanced program control and memory addressing capabilities, typical program inefficiencies can be almost completely eliminated to enable performance and cost which are unprecedented amongst software-programmable solutions. When used to realise accelerators for fast fourier transform, motion estimation, matrix multiplication and sobel edge detection it is shown how the proposed architecture enables real-time performance and with performance and cost comparable with hand-crafted custom circuit accelerators and up to two orders of magnitude beyond existing soft processors.
Resumo:
One of the fundamental problems with image processing of petrographic thin sections is that the appearance (colour I intensity) of a mineral grain will vary with the orientation of the crystal lattice to the preferred direction of the polarizing filters on a petrographic microscope. This makes it very difficult to determine grain boundaries, grain orientation and mineral species from a single captured image. To overcome this problem, the Rotating Polarizer Stage was used to replace the fixed polarizer and analyzer on a standard petrographic microscope. The Rotating Polarizer Stage rotates the polarizers while the thin section remains stationary, allowing for better data gathering possibilities. Instead of capturing a single image of a thin section, six composite data sets are created by rotating the polarizers through 900 (or 1800 if quartz c-axes measurements need to be taken) in both plane and cross polarized light. The composite data sets can be viewed as separate images and consist of the average intensity image, the maximum intensity image, the minimum intensity image, the maximum position image, the minimum position image and the gradient image. The overall strategy used by the image processing system is to gather the composite data sets, determine the grain boundaries using the gradient image, classify the different mineral species present using the minimum and maximum intensity images and then perform measurements of grain shape and, where possible, partial crystallographic orientation using the maximum intensity and maximum position images.
Resumo:
International School of Photonics, Cochin University of Science and Technology
Resumo:
This thesis is an outcome of the investigations carried out on the development of an Artificial Neural Network (ANN) model to implement 2-D DFT at high speed. A new definition of 2-D DFT relation is presented. This new definition enables DFT computation organized in stages involving only real addition except at the final stage of computation. The number of stages is always fixed at 4. Two different strategies are proposed. 1) A visual representation of 2-D DFT coefficients. 2) A neural network approach. The visual representation scheme can be used to compute, analyze and manipulate 2D signals such as images in the frequency domain in terms of symbols derived from 2x2 DFT. This, in turn, can be represented in terms of real data. This approach can help analyze signals in the frequency domain even without computing the DFT coefficients. A hierarchical neural network model is developed to implement 2-D DFT. Presently, this model is capable of implementing 2-D DFT for a particular order N such that ((N))4 = 2. The model can be developed into one that can implement the 2-D DFT for any order N upto a set maximum limited by the hardware constraints. The reported method shows a potential in implementing the 2-D DF T in hardware as a VLSI / ASIC
Resumo:
In this paper we propose a cryptographic transformation based on matrix manipulations for image encryption. Substitution and diffusion operations, based on the matrix, facilitate fast conversion of plaintext and images into ciphertext and cipher images. The paper describes the encryption algorithm, discusses the simulation results and compares with results obtained from Advanced Encryption Standard (AES). It is shown that the proposed algorithm is capable of encrypting images eight times faster than AES.
Resumo:
In the context of the round table the following topics related to image colour processing will be discussed: historical point of view. Studies of Aguilonius, Gerritsen, Newton and Maxwell. CIE standard (Commission International de lpsilaEclaraige). Colour models. RGB, HIS, etc. Colour segmentation based on HSI model. Industrial applications. Summary and discussion. At the end, video images showing the robustness of colour in front of B/W images will be presented
Resumo:
1. There is concern over the possibility of unwanted environmental change following transgene movement from genetically modified (GM) rapeseed Brassica napus to its wild and weedy relatives. 2. The aim of this research was to develop a remote sensing-assisted methodology to help quantify gene flow from crops to their wild relatives over wide areas. Emphasis was placed on locating sites of sympatry, where the frequency of gene flow is likely to be highest, and on measuring the size of rapeseed fields to allow spatially explicit modelling of wind-mediated pollen-dispersal patterns. 3. Remote sensing was used as a tool to locate rapeseed fields, and a variety of image-processing techniques was adopted to facilitate the compilation of a spatially explicit profile of sympatry between the crop and Brassica rapa. 4. Classified satellite images containing rapeseed fields were first used to infer the spatial relationship between donor rapeseed fields and recipient riverside B. rapa populations. Such images also have utility for improving the efficiency of ground surveys by identifying probable sites of sympatry. The same data were then also used for the calculation of mean field size. 5. This paper forms a companion paper to Wilkinson et al. (2003), in which these elements were combined to produce a spatially explicit profile of hybrid formation over the UK. The current paper demonstrates the value of remote sensing and image processing for large-scale studies of gene flow, and describes a generic method that could be applied to a variety of crops in many countries. 6. Synthesis and applications. The decision to approve or prevent the release of a GM cultivar is made at a national rather than regional level. It is highly desirable that data relating to the decision-making process are collected at the same scale, rather than relying on extrapolation from smaller experiments designed at the plot, field or even regional scale. It would be extremely difficult and labour intensive to attempt to carry out such large-scale investigations without the use of remote-sensing technology. This study used rapeseed in the UK as a model to demonstrate the value of remote sensing in assembling empirical information at a national level.
Resumo:
1.There is concern over the possibility of unwanted environmental change following transgene movement from genetically modified (GM) rapeseed Brassica napus to its wild and weedy relatives. 2. The aim of this research was to develop a remote sensing-assisted methodology to help quantify gene flow from crops to their wild relatives over wide areas. Emphasis was placed on locating sites of sympatry, where the frequency of gene flow is likely to be highest, and on measuring the size of rapeseed fields to allow spatially explicit modelling of wind-mediated pollen-dispersal patterns. 3. Remote sensing was used as a tool to locate rapeseed fields, and a variety of image-processing techniques was adopted to facilitate the compilation of a spatially explicit profile of sympatry between the crop and Brassica rapa. 4. Classified satellite images containing rapeseed fields were first used to infer the spatial relationship between donor rapeseed fields and recipient riverside B. rapa populations. Such images also have utility for improving the efficiency of ground surveys by identifying probable sites of sympatry. The same data were then also used for the calculation of mean field size. 5. This paper forms a companion paper to Wilkinson et al. (2003), in which these elements were combined to produce a spatially explicit profile of hybrid formation over the UK. The current paper demonstrates the value of remote sensing and image processing for large-scale studies of gene flow, and describes a generic method that could be applied to a variety of crops in many countries. 6.Synthesis and applications. The decision to approve or prevent the release of a GM cultivar is made at a national rather than regional level. It is highly desirable that data relating to the decision-making process are collected at the same scale, rather than relying on extrapolation from smaller experiments designed at the plot, field or even regional scale. It would be extremely difficult and labour intensive to attempt to carry out such large-scale investigations without the use of remote-sensing technology. This study used rapeseed in the UK as a model to demonstrate the value of remote sensing in assembling empirical information at a national level.