892 resultados para Edge Coloring
Resumo:
In the first half of the twentieth century the dematerializing of boundaries between enclosure and exposure problematized traditional expectations of the domestic environment. At the same time, as a space of escalating technological control, the modern domestic interior also offered new potential to redefine the meaning and means of habitation. The inherent tension between these opposing forces is particularly evident in the introduction of new electric lighting technology and applications into the modern domestic interior in the mid-twentieth century. Addressing this nexus of technology and domestic psychology, this article examines the critical role of electric lighting in regulating and framing both the public and private occupation of Philip Johnson's New Canaan estate. Exploring the dialectically paired transparent Glass House and opaque Guest House, this study illustrates how Johnson employed electric light to negotiate the visual environment of the estate as well as to help sustain a highly aestheticized domestic lifestyle. Contextualized within the existing literature, this analysis provides a more nuanced understanding of the New Canaan estate as an expression of Johnson's interests as a designer as well as a subversion of traditional suburban conventions.
Resumo:
In the first half of the twentieth century the dematerializing of boundaries between enclosure and exposure problematized traditional acts of “occupation” and understandings of the domestic environment. As a space of escalating technological control, the modern domestic interior offered new potential to re-define the meaning and means of habitation. This shift is clearly expressed in the transformation of electric lighting technology and applications for the modern interior in the mid-twentieth century. Addressing these issues, this paper examines the critical role of electric lighting in regulating and framing both the public and private occupation of Philip Johnson’s New Canaan estate. Exploring the dialectically paired transparent Glass House and opaque Guest House (both 1949), this study illustrates how Johnson employed artificial light to control the visual environment of the estate as well as to aestheticize the performance of domestic space. Looking closely at the use of artificial light to create emotive effects as well as to intensify the experience of occupation, this revisiting of the iconic Glass House and lesser-known Guest House provides a more complex understanding of Johnson’s work and the means with which he inhabited his own architecture. Calling attention to the importance of Johnson serving as both architect and client, and his particular interest in exploring the new potential of architectural lighting in this period, this paper investigates Johnson’s use of electric light to support architectural narratives, maintain visual order and control, and to suit the nuanced desires of domestic occupation.
Resumo:
We consider a multicommodity flow problem on a complete graph whose edges have random, independent, and identically distributed capacities. We show that, as the number of nodes tends to infinity, the maximumutility, given by the average of a concave function of each commodity How, has an almost-sure limit. Furthermore, the asymptotically optimal flow uses only direct and two-hop paths, and can be obtained in a distributed manner.
Resumo:
The temperature and power dependence of Fermi-edge singularity (FES) in high-density two-dimensional electron gas, specific to pseudomorphic AlxGa1-xAs/InGa1-yAs/GaAs heterostructures is studied by photoluminescence (PL). In all these structures, there are two prominent transitions E-11 and E-21 considered to be the result of electron-hole recombination from first and second electron sub-bands with that of first heavy-hole sub-band. FES is observed approximately 5-10 meV below the E-21 transition. At 4.2 K, FES appears as a lower energy shoulder to the E-21 transition. The PL intensity of all the three transitions E-11, FES and E-21 grows linearly with excitation power. However, we observe anomalous behavior of FES with temperature. While PL intensity of E-11 and E-21 decrease with increasing temperature, FES transition becomes stronger initially and then quenches-off slowly (till 40K). Though it appears as a distinct peak at about 20 K, its maximum is around 7 - 13 K.
Resumo:
Hole-doped perovskites such as La1-xCaxMnO3 present special magnetic and magnetotransport properties, and it is commonly accepted that the local atomic structure around Mn ions plays a crucial role in determining these peculiar features. Therefore experimental techniques directly probing the local atomic structure, like x-ray absorption spectroscopy (XAS), have been widely exploited to deeply understand the physics of these compounds. Quantitative XAS analysis usually concerns the extended region [extended x-ray absorption fine structure (EXAFS)] of the absorption spectra. The near-edge region [x-ray absorption near-edge spectroscopy (XANES)] of XAS spectra can provide detailed complementary information on the electronic structure and local atomic topology around the absorber. However, the complexity of the XANES analysis usually prevents a quantitative understanding of the data. This work exploits the recently developed MXAN code to achieve a quantitative structural refinement of the Mn K-edge XANES of LaMnO3 and CaMnO3 compounds; they are the end compounds of the doped manganite series LaxCa1-xMnO3. The results derived from the EXAFS and XANES analyses are in good agreement, demonstrating that a quantitative picture of the local structure can be obtained from XANES in these crystalline compounds. Moreover, the quantitative XANES analysis provides topological information not directly achievable from EXAFS data analysis. This work demonstrates that combining the analysis of extended and near-edge regions of Mn K-edge XAS spectra could provide a complete and accurate description of Mn local atomic environment in these compounds.
Resumo:
Bending moment coefficients for the design of rectangular reinforced concrete panels supported on four sides with a short discontinuous edge are derived using the strip theory. The moment fields resulting from the use of proposed coefficients are examined in terms of the moment volume for possible savings in reinforcement and compared with other codified procedures. The strip coefficients averaged over the corresponding sides of the panel, besides resulting in considerable savings in reinforcement, are found to be identical with the coefficients predicted by simple yield line theory using an orthotropic layout of reinforcement.
Resumo:
The general method earlier developed by the writers for obtaining valid lower bound solutions to slabs under uniformly distributed load and supported along all edges is extended to the slabs with a free edge. Lower bound solutions with normal moment criterion are presented for six cases of orthotropically reinforced slabs, with one of the short edges being free and the other three edges being any combination of fixed and simply supported conditions. The expressions for moment field and collapse load are given for each slab. The lower bounds have been compared with the corresponding upper bound values obtained from the yield line theory with simple straight yield line modes of failure. They are also compared with Nielsen’s solutions available for two cases with isotropic reinforcement.
Resumo:
X‐ray absorption near‐edge spectroscopy studies show that Pb in superconducting Tl0.5Pb0.5CaSr2Cu2O7+δ is essentially in the 4+ state while it is in the 2+ state in Pb2Sr2Ca1−xLnxCu3O8+δ.
Resumo:
The max-coloring problem is to compute a legal coloring of the vertices of a graph G = (V, E) with a non-negative weight function w on V such that Sigma(k)(i=1) max(v epsilon Ci) w(v(i)) is minimized, where C-1, ... , C-k are the various color classes. Max-coloring general graphs is as hard as the classical vertex coloring problem, a special case where vertices have unit weight. In fact, in some cases it can even be harder: for example, no polynomial time algorithm is known for max-coloring trees. In this paper we consider the problem of max-coloring paths and its generalization, max-coloring abroad class of trees and show it can be solved in time O(vertical bar V vertical bar+time for sorting the vertex weights). When vertex weights belong to R, we show a matching lower bound of Omega(vertical bar V vertical bar log vertical bar V vertical bar) in the algebraic computation tree model.
Resumo:
The special magnetotransport properties of hole doped manganese perovskites originate from a complex interplay among structural, magnetic and electronic degree of freedom. In this picture the local atomic structure around Mn ions plays a special role and this is the reason why short range order techniques like X-ray absorption spectroscopy (XAS) have been deeply exploited for studying these compounds. The analysis of near edge region features (XANES) of XAS spectra can provide very fine details of the local structure around Mn, complementary to the EXAFS, so contributing to the full understanding of the peculiar physical properties of these materials. Nevertheless the XANES analysis is complicated by the large amount of structural and electronic details involved making difficult the quantitative interpretation.This work exploits the recently developed MXAN code to achieve a full structural refinement of the Mn K edge XANES of LaMnO3 and CaMnO3 compounds; they are the end compounds of the doped manganite series LaxCa1-xMnO3, in which the Mn ions are present only in one charge state as Mn3+ and Mn4+ respectively. The good agreement between the results derived from the analysis of near edge and extended region of the XAS spectra demonstrates that a quantitative picture of the local structure call be obtained from structural refinement of Mn K edge XANES data in these crystalline compounds. The XANES analysis offers, in addition.. the possibility to directly achieve information on the topology of local atomic structure around the absorber not directly achievable from EXAFS.
Resumo:
According to Wen's theory, a universal behavior of the fractional quantum Hall edge is expected at sufficiently low energies, where the dispersion of the elementary edge excitation is linear. A microscopic calculation shows that the actual dispersion is indeed linear at low energies, but deviates from linearity beyond certain energy, and also exhibits an "edge roton minimum." We determine the edge exponent from a microscopic approach, and find that the nonlinearity of the dispersion makes a surprisingly small correction to the edge exponent even at energies higher than the roton energy. We explain this insensitivity as arising from the fact that the energy at maximum spectral weight continues to show an almost linear behavior up to fairly high energies. We also study, in an effective-field theory, how interactions modify the exponent for a reconstructed edge with multiple edge modes. Relevance to experiment is discussed.
Resumo:
The chemical-shift of the X-ray K-absorption edge of Co was studied in a large number of compounds, complexes (spinels) and minerals of Co in its different oxidation states having widely different crystal structures and containing different types of bonding and various types of ligands, and were reported collectively, for the first time, in a single paper. A quadratic relationship was established on the basis of least-squares regression analysis to hold between the chemical-shift and the effective charge on the absorbing atom, but the dominance of the linear term was shown. This relation was utilized in evaluating the charge on the Co-ion in a number of minerals. The effect on chemical-shift of oxidation states of the absorbing atom, of the bond length, crystal structure and higher shell atoms of the molecule, and of electronegativity, atomic number and ionic radius of the ligand was discussed.
Resumo:
The effect of having an edge reinforcement around a circular elastic inclusion in a cylindrical shell is studied. The influence of various parameters of the reinforcement such as area of cross section and moment of inertia on the stress concentrations around the inclusion is investigated. It is found that for certain inclusion parameters it is possible to get an optimum reinforcement, which gives minimum stress concentration around the inclusion. The effect of moment of inertia of the reinforcement of SCF is found to be negligible. The results are plotted in a non-dimensional form and a comparison with flat plate results is made which show the curvature effect. In the limiting case of a rigid reinforcement the results tend to those of a rigid circular inclusion. Results are also presented for different values of μe the ratio of extensional rigidity of shell to that of the inclusion.
Resumo:
The use of appropriate finite elements in different regions of a stressed solid can be expected to be economical in computing its stress response. This concept is exploited here in studying stresses near free edges in laminated coupons. The well known free edge problem of [0/90], symmetric laminate is considered to illustrate the application of the concept. The laminate is modelled as a combination of three distinct regions. Quasi-three-dimensional eight-noded quadrilateral isoparametric elements (Q3D8) are used at and near the free edge of the laminate and two-noded line elements (Q3D2) are used in the region away from the free edge. A transition element (Q3DT) provides a smooth inter-phase zone between the two regions. Significant reduction in the problem size and hence in the computational time and cost have been achieved at almost no loss of accuracy.