961 resultados para Ecosystem Function Analysis
Resumo:
MiAMP1 is a low-molecular-weight, cysteine-rich, antimicrobial peptide isolated from the nut kernel of Macadamia integrifolia. A DNA sequence encoding MiAMP1 with an additional ATG: start codon was cloned into a modified pET vector under the control of the T7 RNA polymerase promoter. The pET vector was cotransformed together with the vector pSB161, which expresses a rare arginine tRNA. The peptide was readily isolated in high yield from the insoluble fraction of the Escherichia coil extract. The purified peptide was shown to have an identical molecular weight to the native peptide by mass spectroscopy indicating that the N-terminal methionine had been cleaved. Analysis by NMR spectroscopy indicated that the refolded recombinant peptide had a similar overall three-dimensional structure to that of the native peptide. The peptide inhibited the growth of phytopathogenic fungi in vitro in a similar manner to the native peptide. To our knowledge, MiAMP1 is the first antimicrobial peptide from plants to be functionally expressed in E. coil. This will permit a detailed structure-function analysis of the peptide and studies of its mode of action on phytopathogens. (C) 1999 Academic Press.
Resumo:
The aim of this study is to create a two-tiered assessment combining restoration and conservation, both needed for biodiversity management. The first tier of this approach assesses the condition of a site using a standard bioassessment method, AUSRIVAS, to determine whether significant loss of biodiversity has occurred because of human activity. The second tier assesses the conservation value of sites that were determined to be unimpacted in the first step against a reference database. This ensures maximum complementarity without having to set a priori target areas. Using the reference database, we assign site-specific and comparable coefficients for both restoration (Observed/Expected taxa with > 50% probability of occurrence) and conservation values (O/E taxa with < 50%, rare taxa). In a trial on 75 sites on rivers around Sydney, NSW, Australia we were able to identify three regions: (1) an area that may need restoration; (2) an area that had a high conservation value and; (3) a region that was identified as having significant biodiversity loss but with high potential to respond to rehabilitation and become a biodiversity hotspot. These examples highlight the use of the new framework as a comprehensive system for biodiversity assessment.
Resumo:
Many aspects of the biology and organization of Neotropical social wasps in the highlands are unknown. Polybia aequatorialis is a highland wasp of Costa Rica distributed between 1, 150 and 3,200 m in altitude, and little information on this species is recorded. We investigated the size of a colony of P. aequatorialis in the Cerro de la Muerte region of Costa Rica, and studied the morphological differences between queens and workers. Measures were taken from 248 reproductive and non-reproductive females, and caste differentiation was analyzed by Discrimination Function Analysis. We did not find a highly pronounced caste distinction in P. aequatorialis, even though ANOVA showed that queens and workers differed in all morphometric measures. The morphological differences between the reproductive and non-reproductive females probably results from a developmental switch, which is a characteristic caste syndrome of Polybia.
Resumo:
Transposon elements are important tools for gene function analysis, for example they can be used to easily create genome-wide collections of insertion mutants. Transposons may also carry sequences coding for an epitope or fluorescent marker useful for protein expression and localization analysis. We have developed three new Tn5-based transposons that incorporate a GFP (green fluorescent protein) coding sequence to generate fusion proteins in the important fungal pathogen Candida albicans. Each transposon also contains the URA3 and Kan(R) genes for yeast and bacterial selection, respectively. After in vitro transposition, the insertional allele is transferred to the chromosomal locus by homologous recombination. Transposons Tn5-CaGFP and Tn5-CaGFP-URA3:FLIP can generate C-terminal truncated GFP fusions. A URA3 flipper recycling cassette was incorporated into the transposon Th5-CaGFP-UFRA3:FLIP. After the induction of Flip recombinase to excise the marker, the heterozygous strain is transformed again in order to obtain a GFP-tagged homozygous strains. In the Tn5-CaGFP-FL transposon the markers are flanked by a rare-cutting enzyme. After in vitro transposition into a plasmid-borne target gene, the markers are eliminated by restriction digestion and religation, resulting in a construct coding for full-length GFP-fusion proteins. This transposon can generate plasmid libraries of GFP insertions in proteins where N- or C-terminal tagging may alter localization. We tested our transposon system by mutagenizing the essential septin CDC3 gene. The results indicate that the Cdc3 C-terminal extension is important for correct septin filament assembly. The transposons described here provide a new system to obtain global gene expression and protein localization data in C. albicans. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Short-nosed bandicoots, Isoodon, have undergone marked range contractions since European colonisation of Australia and are currently divided into many subspecies, the validity of which is debated. Discriminant function analysis of morphology and a phylogeny of Isoodon based on mtDNA control region sequences indicate a clear split between two of the three recognised species, I. macrourus and I. obesulus/auratus. However, while all previously recognised taxa within the I. obesulus/auratus group are morphologically distinct, I. auratus and I. obesulus are not phylogenetically distinct for mtDNA. The genetic divergence between I. obesulus and I. auratus (2.6%) is similar to that found among geographic isolates of the former (I. o. obesulus and I. o. peninsulae: 2.7%). Further, the divergence between geographically close populations of two different species (I. o. obesulus from Western Australia and I. a. barrowensis: 1.2%) is smaller than that among subspecies within I. auratus (I. a. barrowensis and I. auratus from northern Western Australia: 1.7%). A newly discovered population of Isoodon in the Lamb Range, far north Queensland, sympatric with a population of I. m. torosus, is shown to represent a range extension of I. o. peninsulae (350 km). It seems plausible that what is currently considered as two species, I. obesulus and I. auratus, was once one continuous species now represented by isolated populations that have diverged morphologically as a consequence of adaptation to the diverse environments that occur throughout their range. The taxonomy of these populations is discussed in relation to their morphological distinctiveness and genetic similarity.
Resumo:
We introduce a conceptual model for the in-plane physics of an earthquake fault. The model employs cellular automaton techniques to simulate tectonic loading, earthquake rupture, and strain redistribution. The impact of a hypothetical crustal elastodynamic Green's function is approximated by a long-range strain redistribution law with a r(-p) dependance. We investigate the influence of the effective elastodynamic interaction range upon the dynamical behaviour of the model by conducting experiments with different values of the exponent (p). The results indicate that this model has two distinct, stable modes of behaviour. The first mode produces a characteristic earthquake distribution with moderate to large events preceeded by an interval of time in which the rate of energy release accelerates. A correlation function analysis reveals that accelerating sequences are associated with a systematic, global evolution of strain energy correlations within the system. The second stable mode produces Gutenberg-Richter statistics, with near-linear energy release and no significant global correlation evolution. A model with effectively short-range interactions preferentially displays Gutenberg-Richter behaviour. However, models with long-range interactions appear to switch between the characteristic and GR modes. As the range of elastodynamic interactions is increased, characteristic behaviour begins to dominate GR behaviour. These models demonstrate that evolution of strain energy correlations may occur within systems with a fixed elastodynamic interaction range. Supposing that similar mode-switching dynamical behaviour occurs within earthquake faults then intermediate-term forecasting of large earthquakes may be feasible for some earthquakes but not for others, in alignment with certain empirical seismological observations. Further numerical investigation of dynamical models of this type may lead to advances in earthquake forecasting research and theoretical seismology.
Resumo:
Introdução – Na avaliação diagnóstica em mamografia, o desempenho do radiologista pode estar sujeito a erros de diagnóstico. Objetivo – Descrever a importância da perceção visual na análise da mamografia, identificando os principais fatores que contribuem para a perceção visual do radiologista e que condicionam a acuidade diagnóstica. Metodologia – Estudo descritivo baseado numa revisão sistemática de literatura através da PubMed e da Science Direct. Foram incluídos 42 artigos que respeitavam, pelo menos, um dos critérios de inclusão no estudo. Para a seleção das referências foi utilizada a metodologia PRISMA, constituída por 4 fases: identificação, seleção preliminar, elegibilidade e estudos incluídos. Resultados – Na avaliação diagnóstica em mamografia, a perceção visual está intimamente relacionada com: 1) diferentes parâmetros visuais e da motilidade ocular (acuidade visual, sensibilidade ao contraste e à luminância e movimentos oculares); 2) com condições de visualização de uma imagem (iluminância da sala e luminância do monitor); e 3) fadiga ocular provocada pela observação diária consecutiva de imagens. Conclusões – A perceção visual pode ser influenciada por 3 categorias de erros observados: erros de pesquisa (lesões não são fixadas pela fóvea), erros de reconhecimento (lesões fixadas, mas não durante o tempo suficiente) e erros de decisão (lesões fixadas, mas não identificadas como suspeitas). Os estudos analisados sobre perceção visual, atenção visual e estratégia visual, bem como os estudos sobre condições de visualização não caracterizam a função visual dos observadores. Para uma avaliação correta da perceção visual em mamografia deverão ser efetuados estudos que correlacionem a função visual com a qualidade diagnóstica. ABSTRACT - Introduction – Diagnostic evaluation in mammography could be influenced by the radiologist performance that could be under diagnostic errors. Aims – To describe the importance of radiologist visual perception in mammographic diagnostic evaluation and to identify the main factors that contribute to diagnostic accuracy. Methods – In this systematic review 42 references were included based on inclusion criteria (PubMed and Science Direct). PRISMA method was used to select the references following 4 steps: identification, screening, eligibility and included references. Results – Visual perception in mammography diagnostic evaluation is related with: 1) visual parameters and ocular motility (visual acuity, contrast sensitivity and luminance and ocular movements); 2) image visualization environment (room iluminance and monitor luminance); and 3) eyestrain caused by image daily consecutive observation. Conclusions – Visual perception can be influenced by three errors categories: search errors (lesions are never looked at with high-resolution foveal vision), recognition errors (lesions are looked at, but not long enough to detect or recognize) and decision errors (lesions are looked at for long periods of time but are still missed). The reviewed studies concerning visual perception, visual attention, visual strategies and image visualization environment do not describe observer’s visual function. An accurate evaluation of visual perception in mammography must include visual function analysis.
Resumo:
The plastral spotting variation in the chelid turtle Phrynops hilarii (Duméril & Bibron, 1835) in relation to sex, size, and geographic procedence of individuals was analyzed. States for qualitative characters were analyzed using non-parametric tests. Quantitative characters (shell and scute measurements) were standardized for body size by linear regression against carapace length, and were subjected to principal components analysis and canonical discriminant function analysis. Results suggest that increased plastral spotting is a polymorphic ontogenetic trait in P. hilarii. Neither hatchlings nor juveniles have plastral pattern moderately or heavily pigmented. The simplest pattern, however, may persist without changes in some adults. There are no differences between sexes. The spatial distribution of the plastral pattern is not ordered latitudinally or longitudinally, showing no relationship with gradients of elevation, temperature, or precipitation. This pattern trait lacks of taxonomic significance. The morphometric analysis failed to reveal any character of diagnostic utility in the plastron to support the possibility that these patterns correspond to different sympatric taxa.
Resumo:
Morphometric variability among shrimp populations of the genus Palaemonetes Heller, 1869 from seven lakes (Huanayo and Urcococha, in Peru; Amanã, Mamirauá, Camaleão, Cristalino e Iruçanga, in Brasil) in the Amazon Basin, presumably belonging to Palaemonetes carteri Gordon, 1935 and Palaemonetes ivonicus Holthuis, 1950, were studied. The morphometric studies were carried out from the ratios obtained from the morphometric characters. Multivariated analysis (Principal Components Analysis-PCA, Discriminant Function Analysis and Cluster Analysis) were applied over the ratios. Intra- and interpopulation variations of the rostrum teeth, and the number of spines in the male appendix, were analyzed through descriptive statistics and bivariate analysis (Spearman Rank Correlation test). Results indicated a wide plasticity and overlapping in the studied ratios between populations. The Principal Components Analysis was not able to separate different populations, revealing a large intrapopulation plasticity and strong interpopulation similarity in the studied ratios. Although the Discriminant Functions Analysis was not able to fully discriminate populations, they could be allocated in three subgroups: 1) Cristalino and Iruçanga; 2) Huanayo, Urcococha and Camaleão and 3) Mamirauá and Amanã. The first two groups were morphometrically separated from each other, whereas the third one presented a strong overlap with the former two. The Cluster Analysis confirmed the first two subgroups separation, and indicated that the first and third groups were closely related. Rostrum teeth and number of spines in the appendix masculina showed a large intrapopulation variation and a strong overlapping among the studied populations, regardless of the species.
Resumo:
La tesi en projecte aborda l’estudi multiescala de la relació entre la variabilitat de la turbulència i els nutrients, i l’estructura i la dinàmica de l’ecosistema costaner en el Mediterrani noroccidental. A partir d’experiments al laboratori i de diferents campanyes al mar, es pretén generar indicadors de funcionament de l’ecosistema planctònic sensibles a variacions hidrodinàmiques. L’efecte conjunt de la turbulència i els nutrients es preveu condicionat no únicament per la magnitud d’ambdues variables, sino també per la relació temporal entre els episodis de turbulència i els aports de nutrients. Per tal de tenir una casuística més àmplia de validació dels indicadors, s’han seleccionat tres àrees d’estudi properes a les desembocadures de rius amb aports de nutrients de concentracions relatives molt variables. La finalitat última del treball és millorar la comprensió del funcionament de l’ecosistema costaner en la interfase terra-mar per a una gestió més eficaç dels recursos.
Resumo:
Time-expanded echolocation calls were recorded from 29 species of Neotropical bats in lowland moist tropical forest in Trinidad, West Indies with three aims (I) to describe the echolocation calls of the members of a diverse Neotropical bat community, especially members of the family Phyllostomidae, whose calls are not well documented (2) to investigate whether multivariate analysis of calls allows species and foraging guilds to be identified and (3) to evaluate the use of bat detectors in surveying the phyllostomids of Neotropical forests. The calls of 12 species of the family Phyllostomidae are described here for the first time and a total of 29 species, belonging to five families (Emballonuridae, Mormoopidae, Phyllostomidae, Molossidae and Vespertilionidae) were recorded Quadratic discriminant function analysis (DFA) was used to obtain classification rates for each one of 11 individual species and for six guilds (based on diet, foraging mode and habitat) comprising 26 species Overall classification rates were low compared to similar studies conducted in the Palaeotropics We suggest that this may be due to a combination of ecological plasticity for certain species and a loose relationship between echolocation call shape, fine-grained resource partitioning and resource acquisition in phyllostomids
Resumo:
In CoDaWork’05, we presented an application of discriminant function analysis (DFA) to 4 differentcompositional datasets and modelled the first canonical variable using a segmented regression modelsolely based on an observation about the scatter plots. In this paper, multiple linear regressions areapplied to different datasets to confirm the validity of our proposed model. In addition to dating theunknown tephras by calibration as discussed previously, another method of mapping the unknown tephrasinto samples of the reference set or missing samples in between consecutive reference samples isproposed. The application of these methodologies is demonstrated with both simulated and real datasets.This new proposed methodology provides an alternative, more acceptable approach for geologists as theirfocus is on mapping the unknown tephra with relevant eruptive events rather than estimating the age ofunknown tephra.Kew words: Tephrochronology; Segmented regression
Resumo:
Les écosystèmes fournissent de nombreuses ressources et services écologiques qui sont utiles à la population humaine. La biodiversité est une composante essentielle des écosystèmes et maintient de nombreux services. Afin d'assurer la permanence des services écosystémiques, des mesures doivent être prises pour conserver la biodiversité. Dans ce but, l'acquisition d'informations détaillées sur la distribution de la biodiversité dans l'espace est essentielle. Les modèles de distribution d'espèces (SDMs) sont des modèles empiriques qui mettent en lien des observations de terrain (présences ou absences d'une espèce) avec des descripteurs de l'environnement, selon des courbes de réponses statistiques qui décrive la niche réalisée des espèces. Ces modèles fournissent des projections spatiales indiquant les lieux les plus favorables pour les espèces considérées. Le principal objectif de cette thèse est de fournir des projections plus réalistes de la distribution des espèces et des communautés en montagne pour le climat présent et futur en considérant non-seulement des variables abiotiques mais aussi biotiques. Les régions de montagne et l'écosystème alpin sont très sensibles aux changements globaux et en même temps assurent de nombreux services écosystémiques. Cette thèse est séparée en trois parties : (i) fournir une meilleure compréhension du rôle des interactions biotiques dans la distribution des espèces et l'assemblage des communautés en montagne (ouest des Alpes Suisses), (ii) permettre le développement d'une nouvelle approche pour modéliser la distribution spatiale de la biodiversité, (iii) fournir des projections plus réalistes de la distribution future des espèces ainsi que de la composition des communautés. En me focalisant sur les papillons, bourdons et plantes vasculaires, j'ai détecté des interactions biotiques importantes qui lient les espèces entre elles. J'ai également identifié la signature du filtre de l'environnement sur les communautés en haute altitude confirmant l'utilité des SDMs pour reproduire ce type de processus. A partir de ces études, j'ai contribué à l'amélioration méthodologique des SDMs dans le but de prédire les communautés en incluant les interactions biotiques et également les processus non-déterministes par une approche probabiliste. Cette approche permet de prédire non-seulement la distribution d'espèces individuelles, mais également celle de communautés dans leur entier en empilant les projections (S-SDMs). Finalement, j'ai utilisé cet outil pour prédire la distribution d'espèces et de communautés dans le passé et le futur. En particulier, j'ai modélisé la migration post-glaciaire de Trollius europaeus qui est à l'origine de la structure génétique intra-spécifique chez cette espèce et évalué les risques de perte face au changement climatique. Finalement, j'ai simulé la distribution des communautés de bourdons pour le 21e siècle afin d'évaluer les changements probables dans ce groupe important de pollinisateurs. La diversité fonctionnelle des bourdons va être altérée par la perte d'espèces spécialistes de haute altitude et ceci va influencer la pollinisation des plantes en haute altitude. - Ecosystems provide a multitude of resources and ecological services, which are useful to human. Biodiversity is an essential component of those ecosystems and guarantee many services. To assure the permanence of ecosystem services for future generation, measure should be applied to conserve biodiversity. For this purpose, the acquisition of detailed information on how biodiversity implicated in ecosystem function is distributed in space is essential. Species distribution models (SDMs) are empirical models relating field observations to environmental predictors based on statistically-derived response surfaces that fit the realized niche. These models result in spatial predictions indicating locations of the most suitable environment for the species and may potentially be applied to predict composition of communities and their functional properties. The main objective of this thesis was to provide more accurate projections of species and communities distribution under current and future climate in mountains by considering not solely abiotic but also biotic drivers of species distribution. Mountain areas and alpine ecosystems are considered as particularly sensitive to global changes and are also sources of essential ecosystem services. This thesis had three main goals: (i) a better ecological understanding of biotic interactions and how they shape the distribution of species and communities, (ii) the development of a novel approach to the spatial modeling of biodiversity, that can account for biotic interactions, and (iii) ecologically more realistic projections of future species distributions, of future composition and structure of communities. Focusing on butterfly and bumblebees in interaction with the vegetation, I detected important biotic interactions for species distribution and community composition of both plant and insects along environmental gradients. I identified the signature of environmental filtering processes at high elevation confirming the suitability of SDMs for reproducing patterns of filtering. Using those case-studies, I improved SDMs by incorporating biotic interaction and accounting for non-deterministic processes and uncertainty using a probabilistic based approach. I used improved modeling to forecast the distribution of species through the past and future climate changes. SDMs hindcasting allowed a better understanding of the spatial range dynamic of Trollius europaeus in Europe at the origin of the species intra-specific genetic diversity and identified the risk of loss of this genetic diversity caused by climate change. By simulating the future distribution of all bumblebee species in the western Swiss Alps under nine climate change scenarios for the 21st century, I found that the functional diversity of this pollinator guild will be largely affected by climate change through the loss of high elevation specialists. In turn, this will have important consequences on alpine plant pollination.
Resumo:
Many terrestrial and marine systems are experiencing accelerating decline due to the effects of global change. This situation has raised concern about the consequences of biodiversity losses for ecosystem function, ecosystem service provision, and human well-being. Coastal marine habitats are a main focus of attention because they harbour a high biological diversity, are among the most productive systems of the world and present high anthropogenic interaction levels. The accelerating degradation of many terrestrial and marine systems highlights the urgent need to evaluate the consequence of biodiversity loss. Because marine biodiversity is a dynamic entity and this study was interested global change impacts, this study focused on benthic biodiversity trends over large spatial and long temporal scales. The main aim of this project was to investigate the current extent of biodiversity of the high diverse benthic coralligenous community in the Mediterranean Sea, detect its changes, and predict its future changes over broad spatial and long temporal scales. These marine communities are characterized by structural species with low growth rates and long life spans; therefore they are considered particularly sensitive to disturbances. For this purpose, this project analyzed permanent photographic plots over time at four locations in the NW Mediterranean Sea. The spatial scale of this study provided information on the level of species similarity between these locations, thus offering a solid background on the amount of large scale variability in coralligenous communities; whereas the temporal scale was fundamental to determine the natural variability in order to discriminate between changes observed due to natural factors and those related to the impact of disturbances (e.g. mass mortality events related to positive thermal temperatures, extreme catastrophic events). This study directly addressed the challenging task of analyzing quantitative biodiversity data of these high diverse marine benthic communities. Overall, the scientific knowledge gained with this research project will improve our understanding in the function of marine ecosystems and their trajectories related to global change.