1000 resultados para Economia - Modelos matemáticos
Resumo:
Este trabalho aplica a teoria de cópulas à mensuração do risco de mercado, através do cálculo do Value at Risk (VaR). A função de cópula oferece uma maior flexibilidade para a agregação de riscos quando comparada com abordagens tradicionais de mensuração de risco. A teoria de cópulas permite a utilização de distribuições de probabilidade diferentes da normal para a modelagem individual dos fatores de risco. Além disso, diferentes estruturas de associação entre eles podem ser aplicadas sem que restrições sejam impostas às suas distribuições. Dessa forma, premissas como a normalidade conjunta dos retornos e a linearidade na dependência entre fatores de risco podem ser dispensadas, possibilitando a correta modelagem de eventos conjuntos extremos e de assimetria na relação de dependência. Após a apresentação dos principais conceitos associados ao tema, um modelo de cópula foi desenvolvido para o cálculo do VaR de três carteiras, expostas aos mercados brasileiros cambial e acionário. Em seguida, a sua precisão foi comparada com a das metodologias tradicionais delta-normal e de simulação histórica. Os resultados mostraram que o modelo baseado na teoria de cópulas foi superior aos tradicionais na previsão de eventos extremos, representados pelo VaR 99%. No caso do VaR 95%, o modelo delta-normal apresentou o melhor desempenho. Finalmente, foi possível concluir que o estudo da teoria de cópulas é de grande relevância para a gestão de riscos financeiros. Fica a sugestão de que variações do modelo de VaR desenvolvido neste trabalho sejam testadas, e que esta teoria seja também aplicada à gestão de outros riscos, como o de crédito, operacional, e até mesmo o risco integrado.
Resumo:
Esta dissertação concentra-se nos processos estocásticos espaciais definidos em um reticulado, os chamados modelos do tipo Cliff & Ord. Minha contribuição nesta tese consiste em utilizar aproximações de Edgeworth e saddlepoint para investigar as propriedades em amostras finitas do teste para detectar a presença de dependência espacial em modelos SAR (autoregressivo espacial), e propor uma nova classe de modelos econométricos espaciais na qual os parâmetros que afetam a estrutura da média são distintos dos parâmetros presentes na estrutura da variância do processo. Isto permite uma interpretação mais clara dos parâmetros do modelo, além de generalizar uma proposta de taxonomia feita por Anselin (2003). Eu proponho um estimador para os parâmetros do modelo e derivo a distribuição assintótica do estimador. O modelo sugerido na dissertação fornece uma interpretação interessante ao modelo SARAR, bastante comum na literatura. A investigação das propriedades em amostras finitas dos testes expande com relação a literatura permitindo que a matriz de vizinhança do processo espacial seja uma função não-linear do parâmetro de dependência espacial. A utilização de aproximações ao invés de simulações (mais comum na literatura), permite uma maneira fácil de comparar as propriedades dos testes com diferentes matrizes de vizinhança e corrigir o tamanho ao comparar a potência dos testes. Eu obtenho teste invariante ótimo que é também localmente uniformemente mais potente (LUMPI). Construo o envelope de potência para o teste LUMPI e mostro que ele é virtualmente UMP, pois a potência do teste está muito próxima ao envelope (considerando as estruturas espaciais definidas na dissertação). Eu sugiro um procedimento prático para construir um teste que tem boa potência em uma gama de situações onde talvez o teste LUMPI não tenha boas propriedades. Eu concluo que a potência do teste aumenta com o tamanho da amostra e com o parâmetro de dependência espacial (o que está de acordo com a literatura). Entretanto, disputo a visão consensual que a potência do teste diminui a medida que a matriz de vizinhança fica mais densa. Isto reflete um erro de medida comum na literatura, pois a distância estatística entre a hipótese nula e a alternativa varia muito com a estrutura da matriz. Fazendo a correção, concluo que a potência do teste aumenta com a distância da alternativa à nula, como esperado.
Resumo:
Com o objetivo de analisar o impacto na Estrutura a Termos de Volatilidade (ETV) das taxas de juros utilizando dois diferentes modelos na estimação da Estrutura a Termo das Taxas de Juros (ETTJ) e a suposição em relação a estrutura heterocedástica dos erros (MQO e MQG ponderado pela duration), a técnica procede em estimar a ETV utilizando-se da volatilidade histórica por desvio padrão e pelo modelo auto-regressivo Exponentially Weighted Moving Average (EWMA). Por meio do teste de backtesting proposto por Kupiec para o VaR paramétrico obtido com as volatilidades das ETV´s estimadas, concluí-se que há uma grande diferença na aderência que dependem da combinação dos modelos utilizados para as ETV´s. Além disso, há diferenças estatisticamente significantes entre as ETV´s estimadas em todo os pontos da curva, particularmente maiores no curto prazo (até 1 ano) e nos prazos mais longos (acima de 10 anos).
Resumo:
This paper tests the optimality of consumption decisions at the aggregate level taking into account popular deviations from the canonical constant-relative-risk-aversion (CRRA) utility function model-rule of thumb and habit. First, based on the critique in Carroll (2001) and Weber (2002) of the linearization and testing strategies using euler equations for consumption, we provide extensive empirical evidence of their inappropriateness - a drawback for standard rule- of-thumb tests. Second, we propose a novel approach to test for consumption optimality in this context: nonlinear estimation coupled with return aggregation, where rule-of-thumb behavior and habit are special cases of an all encompassing model. We estimated 48 euler equations using GMM. At the 5% level, we only rejected optimality twice out of 48 times. Moreover, out of 24 regressions, we found the rule-of-thumb parameter to be statistically significant only twice. Hence, lack of optimality in consumption decisions represent the exception, not the rule. Finally, we found the habit parameter to be statistically significant on four occasions out of 24.
Resumo:
Este trabalho apresenta metodologia de mensuração e gestão de risco para empresas do ramo frigorífico. A ferramenta utilizada é conhecida como Earnings at Risk (EaR), e se adota uma visão top-down, que mostra a variação do resultado da empresa de acordo com variáveis explicativas de mercado e variáveis idiossincráticas. Através da eliminação de multicolinearidade entre essas variáveis com o uso da métrica de Análise de Componentes Principais (ACP), busca-se analisar como o novo EaR se comportaria frente ao enfoque usual, construído com um modelo de regressão linear múltipla. Variáveis dummy fazem parte do modelo de estimação do resultado futuro das empresas frigoríficas, relacionadas à ocorrência ou não de doenças que afetam o gado bovino, e à retirada de embargos econômicos de países importadores durante o período de análise. Ao fim do trabalho é verificado que as variáveis dummy não possuem relevância para a determinação de EaR, e que não se chega a conclusão de que o modelo de EaR com ACP se mostra melhor com menos variáveis, mantendo a mesma variância e significância estatística originais.
Resumo:
We construct a frictionless matching model of the marriage market where women have bidimensional attributes, one continuous (income) and the other dichotomous (home ability). Equilibrium in the marriage market determines intrahousehold allocation of resources and female labor participation. Our model is able to predict partial non-assortative matching, with rich men marrying women with low income but high home ability. We then perform numerical exercises to evaluate the impacts of income taxes in individual welfare and find that there is considerable divergence in the female labor participation response to taxes between the short run and the long run.
Resumo:
The synthetic control (SC) method has been recently proposed as an alternative method to estimate treatment e ects in comparative case studies. Abadie et al. [2010] and Abadie et al. [2015] argue that one of the advantages of the SC method is that it imposes a data-driven process to select the comparison units, providing more transparency and less discretionary power to the researcher. However, an important limitation of the SC method is that it does not provide clear guidance on the choice of predictor variables used to estimate the SC weights. We show that such lack of speci c guidances provides signi cant opportunities for the researcher to search for speci cations with statistically signi cant results, undermining one of the main advantages of the method. Considering six alternative speci cations commonly used in SC applications, we calculate in Monte Carlo simulations the probability of nding a statistically signi cant result at 5% in at least one speci cation. We nd that this probability can be as high as 13% (23% for a 10% signi cance test) when there are 12 pre-intervention periods and decay slowly with the number of pre-intervention periods. With 230 pre-intervention periods, this probability is still around 10% (18% for a 10% signi cance test). We show that the speci cation that uses the average pre-treatment outcome values to estimate the weights performed particularly bad in our simulations. However, the speci cation-searching problem remains relevant even when we do not consider this speci cation. We also show that this speci cation-searching problem is relevant in simulations with real datasets looking at placebo interventions in the Current Population Survey (CPS). In order to mitigate this problem, we propose a criterion to select among SC di erent speci cations based on the prediction error of each speci cations in placebo estimations
Resumo:
A motivação deste trabalho é relacionar a teoria da estatística com uma clássica aplicação prática na indústria, mais especificamente no mercado financeiro brasileiro. Com o avanço de hardware, sistemas de suporte à decisão se tornaram viáveis e desempenham hoje papel fundamental em muitas áreas de interesse como logística, gestão de carteiras de ativos, risco de mercado e risco de crédito. O presente trabalho tem como objetivos principais propor uma metodologia de construção de modelos de escoragem de crédito e mostrar uma aplicação prática em operações de empréstimo pessoal com pagamento em cheques. A parte empírica utiliza dados reais de instituição financeira e duas metodologias estatísticas, análise de regressão linear múltipla e análise de regressão probit. São comparados os resultados obtidos a partir da aplicação de modelos de escoragem de crédito desenvolvidos com cada metodologia com os resultados obtidos sem a utilização de modelos. Assim, demonstra-se o incremento de resultado da utilização de modelos de escoragem e conclui-se se há ou não diferenças significativas entre a utilização de cada metodologia. A metodologia de construção de modelos de escoragem é composta basicamente por duas etapas, definição das relações e da equação para cálculo do escore e a definição do ponto de corte. A primeira consiste em uma busca por relações entre as variáveis cadastrais e de comportamento do cliente, variáveis da operação e o risco de crédito caracterizado pela inadimplência. A segunda indica o ponto em que o risco deixa de ser interessante e o resultado esperado da operação passa a ser negativo. Ambas as etapas são descritas com detalhes e exemplificadas no caso de empréstimos pessoais no Brasil. A comparação entre as duas metodologias, regressão linear e regressão probit, realizada no caso de empréstimos pessoais, considerou dois aspectos principais dos modelos desenvolvidos, a performance estatística medida pelo indicador K-S e o resultado incremental gerado pela aplicação do modelo. Foram obtidos resultados similares com ambas as metodologias, o que leva à conclusão de que a discussão de qual das duas metodologias utilizar é secundária e que se deve tratar a gestão do modelo com maior profundidade.
Resumo:
Este trabalho estuda a lucratividade dos modelos de Análise Técnica no mercado de câmbio brasileiro. Utilizando a metodologia de White (2000) para testar 1712 regras geradas a partir de quatro modelos de Análise Técnica verifica-se que a melhor regra não possui poder de previsibilidade significante ao se considerar os efeitos de data-snooping. Os resultados indicam que o mercado de câmbio brasileiro está de acordo com a hipótese de mercado eficiente sugerida pela literatura.
Resumo:
Pós-graduação em Matemática Universitária - IGCE
Resumo:
"[…]. A aplicação de técnicas estatísticas na análise de problemas económicos, em que é necessário testar hipóteses sobre as relações económicas e prever mudanças nos valores de variáveis relevantes, tem tido uma importância crescente. Algumas relações teóricas entre variáveis económicas podem ser expressas usando modelos matemáticos, cujos parâmetros podem ser estimados usando métodos estatísticos. […].Os gestores de empresas são frequentemente confrontados com processos de tomada de decisão, pelo que a posse de conhecimentos de Estatística e o domínio de software que permita a gestão de informação em tempo real é uma mais-valia, principalmente na análise de situações que incluam cenários de incerteza. Nessa perspetiva, os gestores e todos os outros tomadores de decisão têm de ser capazes de entender a informação e usá-la eficazmente, não esquecendo que “se gerir é tomar decisões, gerir bem é tomar boas decisões".