989 resultados para Ecological Station


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Lady Elliot Island eco-resort, on the Great Barrier Reef, operates with a strong sustainability ethic, and has broken away from its reliance on diesel generators, an initiative which has ongoing and substantial economic benefit. The first step was an energy audit that led to a 35% reduction in energy usage, to an average of 575 kWh per day. The eco-resort then commissioned a hybrid solar power station, in 2008, with energy storage in battery banks. Solar power is currently (2013) providing about 160 kWh of energy per day, and the eco-resort’s diesel fuel usage has decreased from 550 to 100 litres per day, enabling the power station to pay for itself in 3 years. The eco-resort plans to complete its transition to renewable energy by 2015, by installing additional solar panels, and a 10-15 kW wind turbine. This paper starts by discussing why the eco-resort chose a hybrid solar power station to transition to renewable energy, and the barriers to change. It then describes the power station, upgrades through to 2013, the power control system, the problems that were solved to realise the potential of a facility operating in a harsh and remote environment, and its performance. The paper concludes by outlining other eco-resort sustainability practices, including education and knowledge-sharing initiatives, and monitoring the island’s environmental and ecological condition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The seasonal occurrence of sea ice that annually covers almost half the Baltic Sea area provides a unique habitat for halo- and cold temperature-tolerant extremophiles. Baltic Sea ice biology has more than 100 years of tradition that began with the floristic observation of species by the early pioneers using light microscopic techniques that were the only thing available at the time. Since the discovery of life within sea ice, more technologies have become available for taxonomy. Electron microscopy and genetic evidence have been used to identify sea ice biota revealing increased numbers of taxa. Meanwhile ecologists have used light microscopic cell enumeration in addition to the chemical and physical properties of sea ice in attempts to explain the food web structure of sea ice and its functions. Thus, during the Baltic winter, the sea ice hosts more abundant and diverse microbial communities than the water column beneath it. These communities are typically dominated by autotrophic diatoms together with a diverse assortment of dinoflagellates, auto- and heterotrophic flagellates, ciliates, metazoan rotifers and bacteria, which are mostly responsible for the recycling of nutrients. This thesis comprises ecological and systematic studies. In addition to the results of the previous studies carried out on landfast ice, the data presented here provide new insight into the spatial distribution of pelagial sea ice, which has remained largely unexplored. The studies reveal spatial heterogeneity in the pelagial sea ice of the Gulf of Bothnia. There were mismatches in chlorophyll-a concentrations and in photosynthetic efficiencies of the communities studied. The temporal succession was followed and experimental studies performed investigating the community responses towards increased or decreased light in landfast ice in the Gulf of Finland. The systematic studies carried out with established dinoflagellate cultures revealed a new resting cyst belonging to common sea ice dinoflagellate, Scrippsiella hangoei (Schiller) Larsen 1995. The cyst can be used to explain the overwintering of this species during prolonged periods of darkness. The dissimilarities and similarities in the material isolated from the sea ice called for description of a new subspecies Heterocapsa arctica ssp. frigida. The cells obtained in the cultured material were unlike those of the previously described species, necessitating description of ssp. frigida. As a result of its own unique habitus, the subspecies had been noted by Finnish taxonomists during the past three decades and thus its annual occurrence and geographical distribution in the Baltic Sea. This illustrates how combining ecology and systematics increases our understanding of organisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Executive Summary: The western National Coastal Assessment (NCA-West) program of EPA, in conjunction with the NOAA National Ocean Service (NOS), conducted an assessment of the status of ecological condition of soft sediment habitats and overlying waters along the western U.S. continental shelf, between the target depths of 30 and 120 m, during June 2003. NCA-West and NOAA/NOS partnered with the West Coast states (Washington (WA), Oregon (OR), and California (CA)), and the Southern California Coastal Water Research Project (SCCWRP) Bight ’03 program to conduct the survey. A total of 257 stations were sampled from Cape Flattery, WA to the Mexican border using standard methods and indicators applied in previous coastal NCA projects. A key study feature was the incorporation of a stratified-random sampling design with stations stratified by state and National Marine Sanctuary (NMS) status. Each of the three states was represented by at least 50 random stations. There also were a total of 84 random stations located within NOAA’s five NMSs along the West Coast including the Olympic Coast NMS (OCNMS), Cordell Bank NMS (CBNMS), Gulf of Farallones NMS (GFNMS), Monterey Bay NMS (MBNMS), and Channel Islands NMS (CINMS). Collection of flatfish via hook-and-line for fish-tissue contaminant analysis was successful at 50 EMAP/NCA-West stations. Through a collaboration developed with the FRAM Division of the Northwest Fisheries Science Center, fish from an additional 63 stations in the same region and depth range were also analyzed for fish-tissue contaminants. Bottom depth throughout the region ranged from 28 m to 125 m for most stations. Two slightly deeper stations from the Southern California Bight (SCB) (131, 134 m) were included in the data set. About 44% of the survey area had sediments composed of sands (< 20% silt-clay), about 47% was composed of intermediate muddy sands (20-80% silt-clay), and about 9% was composed of muds (> 80% silt-clay). The majority of the survey area (97%) had relatively low percent total organic carbon (TOC) levels of < 2%, while a small portion (< 1%) had high TOC levels (> 5%), in a range potentially harmful to benthic fauna. Salinity of surface waters for 92% of the survey area were > 31 psu, with most stations < 31 psu associated with the Columbia River plume. Bottom salinities ranged only between 31.6 and 34.4 psu. There was virtually no difference in mean bottom salinities among states or between NMS and non-NMS stations. Temperatures of surface water (range 8.5 -19.9 °C) and bottom water (range 5.8 -14.7 °C) averaged several degrees higher in CA in comparison to WA and OR. The Δσt index of watercolumn stratification indicated that about 31% of the survey area had strong vertical stratification of the water column. The index was greatest for waters off WA and lowest for CA waters. Only about 2.6 % of the survey area had surface dissolved oxygen (DO) concentrations ≤ 4.8 mg/L, and there were no values below the lower threshold (2.3 mg/L) considered harmful to the survival and growth of marine animals. Surface DO concentrations were higher in WA and OR waters than in CA, and higher in the OC NMS than in the CA sanctuaries. An estimated 94.3% of the area had bottom-water DO concentrations ≤ 4.8 mg/L and 6.6% had concentrations ≤ 2.3 mg/L. The high prevalence of DO from 2.3 to 4.8 mg/L (85% of survey area) is believed to be associated with the upwelling of naturally low DO water across the West Coast shelf. Mean TSS and transmissivity in surface waters (excluding OR due to sample problems) were slightly higher and lower, respectively, for stations in WA than for those in CA. There was little difference in mean TSS or transmissivity between NMS and non-NMS locations. Mean transmissivity in bottom waters, though higher in comparison to surface waters, showed little difference among geographic regions or between NMS and non-NMS locations. Concentrations of nitrate + nitrite, ammonium, total dissolved inorganic nitrogen (DIN) and orthophosphate (P) in surface waters tended to be highest in CA compared to WA and OR, and higher in the CA NMS stations compared to CA non-sanctuary stations. Measurements of silicate in surface waters were limited to WA and CA (exclusive of the SCB) and showed that concentrations were similar between the two states and approximately twice as high in CA sanctuaries compared to OCNMS or nonsanctuary locations in either state. The elevated nutrient concentrations observed at CA NMS stations are consistent with the presence of strong upwelling at these sites at the time of sampling. Approximately 93% of the area had DIN/P values ≤ 16, indicative of nitrogen limitation. Mean DIN/P ratios were similar among the three states, although the mean for the OCNMS was less than half that of the CA sanctuaries or nonsanctuary locations. Concentrations of chlorophyll a in surface waters ranged from 0 to 28 μg L-1, with 50% of the area having values < 3.9 μg L-1 and 10% having values > 14.5 μg L-1. The mean concentration of chlorophyll a for CA was less than half that of WA and OR locations, and concentrations were lowest in non-sanctuary sites in CA and highest at the OCNMS. Shelf sediments throughout the survey area were relatively uncontaminated with the exception of a group of stations within the SCB. Overall, about 99% of the total survey area was rated in good condition (<5 chemicals measured above corresponding effect range low (ERL) concentrations). Only the pesticides 4,4′-DDE and total DDT exceeded corresponding effect range-median (ERM) values, all at stations in CA near Los Angeles. Ten other contaminants including seven metals (As, Cd, Cr, Cu, Hg, Ag, Zn), 2-methylnaphthalene, low molecular weight PAHs, and total PCBs exceeded corresponding ERLs. The most prevalent in terms of area were chromium (31%), arsenic (8%), 2-methylnaphthalene (6%), cadmium (5%), and mercury (4%). The chromium contamination may be related to natural background sources common to the region. The 2-methylnaphthalene exceedances were conspicuously grouped around the CINMS. The mercury exceedances were all at non-sanctuary sites in CA, particularly in the Los Angeles area. Concentrations of cadmium in fish tissues exceeded the lower end of EPA’s non-cancer, human-health-risk range at nine of 50 EMAP/NCA-West and nine of 60 FRAM groundfish-survey stations, including a total of seven NMS stations in CA and two in the OCNMS. The human-health guidelines for all other contaminants were only exceeded for total PCBs at one station located in WA near the mouth of the Columbia River. Benthic species richness was relatively high in these offshore assemblages, ranging from 19 to 190 taxa per 0.1-m2 grab and averaging 79 taxa/grab. The high species richness was reflected over large areas of the shelf and was nearly three times greater than levels observed in estuarine samples along the West Coast (e.g NCA-West estuarine mean of 26 taxa/grab). Mean species richness was highest off CA (94 taxa/grab) and lower in OR and WA (55 and 56 taxa/grab, respectively). Mean species richness was very similar between sanctuary vs. non-sanctuary stations for both the CA and OR/WA regions. Mean diversity index H′ was highest in CA (5.36) and lowest in WA (4.27). There were no major differences in mean H′ between sanctuary vs. nonsanctuary stations for both the CA and OR/WA regions. A total of 1,482 taxa (1,108 to species) and 99,135 individuals were identified region-wide. Polychaetes, crustaceans and molluscs were the dominant taxa, both by percent abundance (59%, 17%, 12% respectively) and percent species (44%, 25%, 17%, respectively). There were no major differences in the percent composition of benthic communities among states or between NMSs and corresponding non-sanctuary sites. Densities averaged 3,788 m-2, about 30% of the average density for West Coast estuaries. Mean density of benthic fauna in the present offshore survey, averaged by state, was highest in CA (4,351 m-2) and lowest in OR (2,310 m-2). Mean densities were slightly higher at NMS stations vs. non-sanctuary stations for both the CA and OR/WA regions. The 10 most abundant taxa were the polychaetes Mediomastus spp., Magelona longicornis, Spiophanes berkeleyorum, Spiophanes bombyx, Spiophanes duplex, and Prionospio jubata; the bivalve Axinopsida serricata, the ophiuroid Amphiodia urtica, the decapod Pinnixa occidentalis, and the ostracod Euphilomedes carcharodonta. Mediomastus spp. and A. serricata were the two most abundant taxa overall. Although many of these taxa have broad geographic distributions throughout the region, the same species were not ranked among the 10 most abundant taxa consistently across states. The closest similarities among states were between OR and WA. At least half of the 10 most abundant taxa in NMSs were also dominant in corresponding nonsanctuary waters. Many of the abundant benthic species have wide latitudinal distributions along the West Coast shelf, with some species ranging from southern CA into the Gulf of Alaska or even the Aleutians. Of the 39 taxa on the list of 50 most abundant taxa that could be identified to species level, 85% have been reported at least once from estuaries of CA, OR, or WA exclusive of Puget Sound. Such broad latitudinal and estuarine distributions are suggestive of wide habitat tolerances. Thirteen (1.2%) of the 1,108 identified species are nonindigenous, with another 121 species classified as cryptogenic (of uncertain origin), and 208 species unclassified with respect to potential invasiveness. Despite uncertainties of classification, the number and densities of nonindigenous species appear to be much lower on the shelf than in the estuarine ecosystems of the Pacific Coast. Spionid polychaetes and the ampharetid polychaete Anobothrus gracilis were a major component of the nonindigenous species collected on the shelf. NOAA’s five NMSs along the West Coast of the U.S. appeared to be in good ecological condition, based on the measured indicators, with no evidence of major anthropogenic impacts or unusual environmental qualities compared to nearby nonsanctuary waters. Benthic communities in sanctuaries resembled those in corresponding non-sanctuary waters, with similarly high levels of species richness and diversity and low incidence of nonindigenous species. Most oceanographic features were also similar between sanctuary and non-sanctuary locations. Exceptions (e.g., higher concentrations of some nutrients in sanctuaries along the CA coast) appeared to be attributable to natural upwelling events in the area at the time of sampling. In addition, sediments within the sanctuaries were relatively uncontaminated, with none of the samples having any measured chemical in excess of ERM values. The ERL value for chromium was exceeded in sediments at the OCNMS, but at a much lower percentage of stations (four of 30) compared to WA and OR non-sanctuary areas (31 of 70 stations). ERL values were exceeded for arsenic, cadmium, chromium, 2- methylnaphthalene, low molecular weight PAHs, total DDT, and 4,4′-DDE at multiple sites within the CINMS. However, cases where total DDT, 4,4′-DDE, and chromium exceeded the ERL values were notably less prevalent at CINMS than in non-sanctuary waters of CA. In contrast, 2-methylnaphthalene above the ERL was much more prevalent in sediments at the CINMS compared to non-sanctuary waters off the coast of CA. While there are natural background sources of PAHs from oil seeps throughout the SCB, this does not explain the higher incidence of 2-methylnaphthalene contamination around CINMS. Two stations in CINMS also had levels of TOC (> 5%) potentially harmful to benthic fauna, though none of these sites exhibited symptoms of impaired benthic condition. This study showed no major evidence of extensive biological impacts linked to measured stressors. There were only two stations, both in CA, where low numbers of benthic species, diversity, or total faunal abundance co-occurred with high sediment contamination or low DO in bottom water. Such general lack of concordance suggests that these offshore waters are currently in good condition, with the lower-end values of the various biological attributes representing parts of a normal reference range controlled by natural factors. Results of multiple linear regression, performed using full model procedures to test for effects of combined abiotic environmental factors, suggested that latitude and depth had significant influences on benthic variables regionwide. Latitude had a significant inverse influence on all three of the above benthic variables, i.e. with values increasing as latitude decreased (p< 0.01), while depth had a significant direct influence on diversity (p < 0.001) and inverse effect on density (p <0.01). None of these variables varied significantly in relation to sediment % fines (at p< 0.1), although in general there was a tendency for muddier sediments (higher % fines) to have lower species richness and diversity and higher densities than coarser sediments. Alternatively, it is possible that for some of these sites the lower values of benthic variables reflect symptoms of disturbance induced by other unmeasured stressors. The indicators in this study included measures of stressors (e.g., chemical contaminants, eutrophication) that are often associated with adverse biological impacts in shallower estuarine and inland ecosystems. However, there may be other sources of humaninduced stress in these offshore systems (e.g., bottom trawling) that pose greater risks to ambient living resources and which have not been captured. Future monitoring efforts in these offshore areas should include indicators of such alternative sources of disturbance. (137pp.) (PDF contains 167 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organisms were collected on test panels, six inch lengths of dressed two by four inch pine, suspended in the water in a vertical position as described by Turner (1947). The panels were usually located at some convenient structure such as a dock-piling or sea-wall. Except where otherwise indicated by the data, the samples were collected from each station once a month between May 1950 and May 1953. During the three year period, seven hundred and nineteen panels were submerged in Chesapeake Bay. Approximately 14,000 organisms were encountered on these panels of which 20% or approximately 3,000 organisms could be identified from the dried pallets. Preliminary notes on the extent of fouling were made in the field after which the samples were removed to the laboratory for further study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In March-April 2004, the National Oceanic and Atmospheric Administration (NOAA), U.S. Environmental Protection Agency (EPA), and State of Florida (FL) conducted a study to assess the status of ecological condition and stressor impacts throughout the South Atlantic Bight (SAB) portion of the U.S. continental shelf and to provide this information as a baseline for evaluating future changes due to natural or human-induced disturbances. The boundaries of the study region extended from Cape Hatteras, North Carolina to West Palm Beach, Florida and from navigable depths along the shoreline seaward to the shelf break (~100m). The study incorporated standard methods and indicators applied in previous national coastal monitoring programs — Environmental Monitoring and Assessment Program (EMAP) and National Coastal Assessment (NCA) — including multiple measures of water quality, sediment quality, and biological condition. Synoptic sampling of the various indicators provided an integrative weight-of-evidence approach to assessing condition at each station and a basis for examining potential associations between presence of stressors and biological responses. A probabilistic sampling design, which included 50 stations distributed randomly throughout the region, was used to provide a basis for estimating the spatial extent of condition relative to the various measured indicators and corresponding assessment endpoints (where available). Conditions of these offshore waters are compared to those of southeastern estuaries, based on data from similar EMAP/NCA surveys conducted in 2000-2004 by EPA, NOAA, and partnering southeastern states (Florida, Georgia, South Carolina, North Carolina, Virginia) (NCA database for estuaries, EPA Gulf Ecology Division, Gulf Breeze FL). Data from a total of 747 estuarine stations are included in this database. As for the offshore sites, the estuarine samples were collected using standard methods and indicators applied in previous coastal EMAP/NCA surveys including the probabilistic sampling design and multiple indicators of water quality, sediment quality, and biological condition (benthos and fish). The majority of the SAB had high levels of DO in near-bottom water (> 5 mg L-1) indicative of "good" water quality. DO levels in bottom waters exceeded this upper threshold at all sites throughout the coastal-ocean survey area and in 76% of estuarine waters. Twenty-one percent of estuarine bottom waters had moderate levels of DO between 2 and 5 mg L-1 and 3% had DO levels below 2 mg L-1. The majority of sites with DO in the low range considered to be hypoxic (< 2 mg L-1) occurred in North Carolina estuaries. There also was a notable concentration of stations with moderate DO levels (2 – 5 mg L-1) in Georgia and South Carolina estuaries. Approximately 58% of the estuarine area had moderate levels of chlorophyll a (5-10 μg L-1) and about 8% of the area had higher levels, in excess of 10 μg L-1, indicative of eutrophication. The elevated chlorophyll a levels appeared to be widespread throughout the estuaries of the region. In contrast, offshore waters throughout the region had relatively low levels of chlorophyll a with 100% of the offshore survey area having values < 5 μg L-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study was initiated with field work in May 2007 to assess the status of ecological condition and stressor impacts throughout the U.S. continental shelf off South Florida, focusing on soft-bottom habitats, and to provide this information as a baseline for evaluating future changes due to natural or human-induced disturbances. The boundaries of the study region extended from Anclote Key on the western coast of Florida to West Palm Beach on the eastern coast of Florida, inclusive of the Florida Keys National Marine Sanctuary (FKNMS), and from navigable depths along the shoreline seaward to the shelf break (~100m). The study incorporated standard methods and indicators applied in previous national coastal monitoring programs — U.S. Environmental Protection Agency’s (EPA) Environmental Monitoring and Assessment Program (EMAP) and National Coastal Assessment (NCA) — including multiple measures of water quality, sediment quality, and biological condition. Synoptic sampling of the various indicators provided an integrative weight-of-evidence approach to assessing condition at each station and a basis for examining potential associations between presence of stressors and biological responses. A probabilistic sampling design, which included 50 stations distributed randomly throughout the region, was used to provide a basis for estimating the spatial extent of condition relative to the various measured indicators and corresponding assessment endpoints (where available). The study was conducted through a large cooperative effort by National Oceanic and Atmospheric Administration (NOAA)/National Centers for Coastal Ocean Science (NCCOS), EPA, U.S. Geological Survey (USGS), NOAA/Oceanic and Atmospheric Research (OAR)/Atlantic Oceanographic and Meteorological Laboratory in Miami, FKNMS, and the Florida Fish and Wildlife Conservation Commission (FWC). The majority of the South Florida shelf had high levels of dissolved oxygen (DO) in near-bottom water (> 5 mg L-1) indicative of “good” water quality.. DO levels in bottom waters exceeded this upper threshold at 98.8% throughout the coastal-ocean survey area. Only 1.2% of the region had moderate DO levels (2-5 mg/L) and no part of the survey area had DO <2.0 mg/L. In addition, offshore waters throughout the region had relatively low levels of total suspended solids (TSS), nutrients, and chlorophyll a indicative of oligotrophic conditions. Results suggested good sediment quality as well. Sediments throughout the region, which ranged from sands to intermediate muddy sands, had low levels of total organic carbon (TOC) below bioeffect guidelines for benthic organisms. Chemical contaminants in sediments were also mostly at low, background levels. For example, none of the stations had chemicals in excess of corresponding Effects-Range Median (ERM) probable bioeffect values or more than one chemical in excess of lower-threshold Effects-Range Low (ERL) values. Cadmium was the only chemical that occurred at moderate concentrations between corresponding ERL and ERM values. Sixty fish samples from 28 stations were collected and analyzed for chemical contaminants. Eleven of these samples (39% of sites) had moderate levels of contaminants, between lower and upper non-cancer human-health thresholds, and ten (36% of sites) had high levels of contaminants above the upper threshold.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This project was done during a one-year period (2006-2007) with the aim of assessing and evaluating the susceptible and vulnerable habitat of Tajan River estuarine region as well as identifying its ecological features. This region consists of Tajan estuarine region as one of the sub-basins of the Caspian Sea basin which covers a surface of 2km2. In this assessment, 6 riverine estuarine and marine stations were chosen in which non-biotic parameters such as temperature, salinity, dissolved oxygen, pH and nutrients, and biotic parameters such as variation, density, plankton, primary production by chlorophyll-a. Benthos variation density, silt and the organic materials of the sediments were sampled and measured monthly. The amount of chlorophyll-a concentration and primary production showed a lot of seasonal changes at these stations which ranged from0.3 to 96 mg/m3. The results from the primary productions indicated that the eastern station of the estuary had high concentrations of chlorophyll-a during all seasons (96mg/m3). The most important and dominant planktonic groups in this region included Bacillariophyta from plankton and copepoda from zooplankton. The most important Benthos communities consisted of Driessena polymorpha.Cerastoderma lamarki in estuarine region,Chironomus plumosus in riverine region and Hypaniola sp. In marine region. Assessing the annual variation in these three riverine, estuarine and marine regions, phytoplankton with 3.1, Zooplankton with 2.7 and Benthos with 1.9 Showed the most density in the estuarine region. Assessing the annual density, phytoplanktonic (6118967 no . in m3) and zooplanktonic (7272 no . in m3) communities showed the most density in the marine region. Assessing the statistical tests showed that the estuarine and riverine regions had a significant difference in planktonic density (p<0.005) compared with the marine region. Moreover, The zeoplanktonic density in the marine region had a significant difference (p<0.005) with estuarine and riverine regions. Tooki test and one-way variance Analysis showed that in assessing the planktonic groups (p<0.005) and Benthos (p<0.005), there was a significant difference in variation index between river with estuary, and estuary with the sea. The amount of the total annual live biomass of the Benthos resource in Tajan river estuarine region was estimated 757.66 g/m2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Moosa Creek extends from its opening into the Persian Gulf, with some sub narrow creeks leading to it. Zangi creek is one of the main branches of Moosa creek. The creek contains numerous sources of organic pollution, including sewage outlet flows and boat waste. After establishing the Petrochemical special Economic Zone (PETZONE) in 1997 near to the Zangi Creek, the pipelines, streets and railway made it distinct from eastern and western parts of this creek. Industrial activities have released sludge and effluents in this creek along these years. A survey of the Zangi creek was performed, assessing water properties, organic pollution, and the population density, distribution and diversity of macrobenthic fauna through bi-monthly sampling from July 2006 to September 2007. Samples were collected from water near the bottom and sediment at 7 stations include 2 stations inside the distinct Zangi creek and 4 stations along a transect with 1 km distances between them in eastern free part and one reference station located at the Persian Gulf entrance to the Moosa creek. The environmental parameters such as temperature, salinity, pH, dissolved oxygen, COD, turbidity, EC and heavy metals include Hg, Cd, Pb, Ni as well as percentage silt-clay and total organic matter of the sediment were measured. The faunal population density and their distribution are discussed in relation to the environmental changes. Results showed spatial heterogeneity in faunal distribution of the Zangi creek. Nine groups of macrofauna were identified out of distinct zangi creek. Polychaets formed the dominant group (48%) followed by bivalves (13%), gastropods (10%), Decapods (2%), Tanaids (5%), and all other groups (22%). The distinct creek was heavily polluted without any macrofauna communities probably as a consequence of the high pH, COD, low salinity and heavy metals contamination specially Cd and Pb. The other stations near to the disposal site were found with macrofauna communities commonly tolerant to organic pollution, At 3 km east of the disposal site, macrofauna is comparable to the surrounded creek, whereas macrofauna still indicate environmental degradation. Farther a way, faunal density decreases and equilibrium taxa gradually replace opportunistic species, while the other stations were far from polluted area contained lower pollution and relatively healthy macrofauna. The mean biomass of macrobenthic fauna were estimated for the whole studied area. The results are considered in Minimum density and biomass in surrounded creek and maximum density and biomass in 3 km of surrounded area. Biodiversity Indices were low in surrounded creek. The Shanon-weaver information index was used to describe the spatially variations in diversity. Macrofauna density, shanon and simpson index were significantly variable between surrounded and free parts of Zangi creek (p<0.05). The numerical abundance of macrobenthose varied from 221. m-2 in polluted area to 4346 m-2 in free part of Zangi creek. The Shanon-weaver information index varied from 0.4 in distinct area to 2.9 in reference station. The physico- chemical changes between distinct and free creeks showed significant variations such as pH, salinity and EC. Salinity and EC were significantly positive correlate to macrofauna density, whereas pH and TOM percentage indicated significantly negative correlation to density. Heavy metals concentrations in sediments were higher than water samples. Concentration pattern of heavy metals in sediments and water samples were Ni>Pb>Cd>Hg. Salinity and pH were significantly correlated to metals in sediments (p<0.01). No significant correlation were found between Macrofauna density and heavy metals (p<0.05).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sea ice in the western Antarctic Peninsula (WAP) region is both highly variable and rapidly changing. In the Palmer Station region, the ice season duration has decreased by 92 d since 1978. The sea-ice changes affect ocean stratification and freshwater balance and in turn impact every component of the polar marine ecosystem. Long-term observations from the WAP nearshore and offshore regions show a pattern of chlorophyll (Chl) variability with three to five years of negative Chl anomalies interrupted by one or two years of positive anomalies (high and low Chl regimes). Both field observations and results from an inverse food-web model show that these high and low Chl regimes differed significantly from each other, with high primary productivity and net community production (NCP) and other rates associated with the high Chl years and low rates with low Chl years. Gross primary production rates (GPP) averaged 30 mmolC.m-2.d-1 in the low Chl years and 100 mmolC.m-2.d-1 in the high Chl years. Both large and small phytoplankton were more abundant and more productive in high Chl years than in low Chl years. Similarly, krill were more important as grazers in high Chl years, but did not differ from microzooplankton in high or low Chl years. Microzooplankton did not differ between high and low Chl years. Net community production differed significantly between high and low Chl years, but mobilized a similar proportion of GPP in both high and low Chl years. The composition of the NCP was uniform in high and low Chl years. These results mphasize the importance of microbial components in the WAP plankton system and suggest that food webs dominated by small phytoplankton can have pathways that funnel production into NCP, and likely, export.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1.There are tens of thousands of species of phytoplankton found throughout the tree of life. Despite this diversity, phytoplankton are often aggregated into a few functional groups according to metabolic traits or biogeochemical role. We investigate the extent to which phytoplankton species dynamics are neutral within functional groups. 2.Seasonal dynamics in many regions of the ocean are known to affect phytoplankton at the functional group level leading to largely predictable patterns of seasonal succession. It is much more difficult to make general statements about the dynamics of individual species. 3.We use a 7 year time-series at station L4 in the Western English Channel with 57 diatom and 17 dinoflagellate species enumerated weekly to test if the abundance of diatom and dinoflagellate species vary randomly within their functional group envelope or if each species is driven uniquely by external factors. 4.We show that the total biomass of the diatom and dinoflagellate functional groups is well predicted by irradiance and temperature and quantify trait values governing the growth rate of both functional groups. The biomass dynamics of the functional groups are not neutral and each has their own distinct responses to environmental forcing. Compared to dinoflagellates, diatoms have faster growth rates, and grow faster under lower irradiance, cooler temperatures, and higher nutrient conditions. 5.The biomass of most species vary randomly within their functional group biomass envelope, most of the time. As a consequence, modelers will find it difficult to predict the biomass of most individual species. Our analysis supports the approach of using a single set of traits for a functional group and suggests that it should be possible to determine these traits from natural communities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some Ecological Factors Affecting the Input and Population Levels of Total and Faecal Coliforms and Salmonella in Twelve Mile Creek, Lake Ontario and Sewage Waters Near St. Catharines, Ontario. Supervisor: Dr. M. Helder. The present study was undertaken to investigate the role of some ecological factors on sewage-Dorne bacteria in waters near St. Catharines, Ontario. Total and faecal coliform levels and the presence of Salmonella were monitored for a period of a year along with determination of temperature, pH, dissolved oxygen, total dissolved solids, nitrate N, total phosphate P and ammonium N. Bacteriological tests for coliform analysis were done according to APHA Standard Methods by the membrane filtration technique. The grab sampling technique was employed for all sampling. Four sample sites were chosen in the Port Dalhousie beach area to determine what bacteriological or physical relationship the sites had to each other. The sample sites chosen were the sewage inflow to and the effluent from the St. Catharines (Port Dalhousie) Pollution Control Plant, Twelve Mile Creek below the sewage outfall and Lake Ontario at the Lakeside Park beach. The sewage outfall was located in Twelve Mile Creek, approximately 80 meters from the creek junction with the beach and piers on Lake Ontario. Twelve Mile Creek normally carried a large volume of water from the WeIland Canal which was diverted through the DeCew Generating Station located on the Niagara Escarpment. An additional sample site, which was thought to be free of industrial wastes, was chosen at Twenty Mile Creek, also in the Niagara Region of Ontarioo 3 There were marked variations in bacterial numbers at each site and between each site, but trends to lower_numbers were noted from the sewage inflow to Lake Ontario. Better correlations were noted between total and faecal coliform population levels and total phosphate P and ammonium N in Twenty Mile Creek. Other correlations were observed for other sample stations, however, these results also appeared to be random in nature. Salmonella isolations occurred more frequently during the winter and spring months when water temperatures were minimal at all sample stations except the sewage inflow. The frequency of Salmonella isolations appeared to be related to increased levels of total and faecal coli forms in the sewage effluent. However, no clear relationships were established in the other sample stations. Due to the presence of Salmonella and high levels of total and faecal coliform indicator organisms, the sanitary quality of Lake Ontario and Twelve Mile Creek at the sample sites seemed to be impaired over the major portion of the study period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The penaeidean Litopenaeus schmitti, popularly known as white shrimp, is a species of great economic importance, being a target of fishing fleets in the southeast region of Brazil. It is distributed through the western Atlantic, from Cuba to Brazil, until Rio Grande do Sul. Adults are found from shallow depths up to 30 m and have been found to depths of 47 m in the state of Rio de Janeiro, while juveniles are located in bays and estuaries. The studied species is seasonally distributed in the region of Ubatuba. The objectives of this study are to analyze the abundance and ecological distribution of L. schmitti and to assess if and when juveniles use the Indaia estuary during their life cycle. Furthermore, the hypothesis was tested that the main period of recruitment in the bay coincides with the period of closure of fisheries defined by the Instruction of IBAMA. To that end, samples were taken monthly from July 2005 through June 2007, both in Ubatuba Bay and in the estuary formed by the Rio Indaia. At each sampling station, salinity, temperature (bottom), depth, organic matter content (%), and grain size of sediments were measured. We found that the largest catches in the estuary were in late spring and early summer. In Ubatuba Bay, peak catches occurred during winter and early spring, whereas in the second year, already in May, there was a high peak capture. The variation in the number of individuals was correlated with some environmental factors both in the estuary and in the inlet (p < 0.05). In the estuary, abundance was positively correlated with temperature (p = 0.008) and organic matter (p = 0.025) and negatively with depth (p = 0.009). Regarding the Ubatuba Bay, only temperature (p = 0.034) and depth (p = 0.013) were significantly associated with the distribution of the shrimp, both being negative relations. The shrimp L. schmitti uses both the estuarine as well the shore environment, particularly the Ubatuba estuary and its adjacent bay, to complete its life cycle. The proposed period of fisheries closure (between March to May in the state of Sao Paulo) for this and other shrimps coincides with individuals capable of reproduction entering the inlet and thus are being protected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Gulf of Aqaba represents a small scale, easy to access, regional analogue of larger oceanic oligotrophic systems. In this Gulf, the seasonal cycles of stratification and mixing drives the seasonal phytoplankton dynamics. In summer and fall, when nutrient concentrations are very low, Prochlorococcus and Synechococcus are more abundant in the surface water. This two populations are exposed to phosphate limitation. During winter mixing, when nutrient concentrations are high, Chlorophyceae and Cryptophyceae are dominant but scarce or absent during summer. In this study it was tried to develop a simulation model based on historical data to predict the phytoplankton dynamics in the northern Gulf of Aqaba. The purpose is to understand what forces operate, and how, to determine the phytoplankton dynamics in this Gulf. To make the models data sampled in two different sampling station (Fish Farm Station and Station A) were used. The data of chemical, biological and physical factors, are available from 14th January 2007 to 28th December 2009. The Fish Farm Station point was near a Fish Farm that was operational until 17th June 2008, complete closure date of the Fish Farm, about halfway through the total sampling time. The Station A sampling point is about 13 Km away from the Fish Farm Station. To build the model, the MATLAB software was used (version 7.6.0.324 R2008a), in particular a tool named Simulink. The Fish Farm Station models shows that the Fish Farm activity has altered the nutrient concentrations and as a consequence the normal phytoplankton dynamics. Despite the distance between the two sampling stations, there might be an influence from the Fish Farm activities also in the Station A ecosystem. The models about this sampling station shows that the Fish Farm impact appears to be much lower than the impact in the Fish Farm Station, because the phytoplankton dynamics appears to be driven mainly by the seasonal mixing cycle.