929 resultados para Ecological Processes
Resumo:
Beta diversity quantifies spatial and/or temporal variation in species composition. It is comprised of two distinct components, species replacement and nestedness, which derive from opposing ecological processes. Using Scotland as a case study and a β-diversity partitioning framework, we investigate temporal replacement and nestedness patterns of coastal grassland species over a 34-yr time period. We aim to 1) understand the influence of two potentially pivotal processes (climate and land-use changes) on landscape-scale (5 × 5 km) temporal replacement and nestedness patterns, and 2) investigate whether patterns from one β-diversity component can mask observable patterns in the other.
We summarised key aspects of climate driven macro-ecological variation as measures of variance, long-term trends, between-year similarity and extremes, for three important climatic predictors (minimum temperature, water-balance and growing degree-days). Shifts in landscape-scale heterogeneity, a proxy of land-use change, was summarised as a spatial multiple-site dissimilarity measure. Together, these climatic and spatial predictors were used in a multi-model inference framework to gauge the relative contribution of each on temporal replacement and nestedness patterns.
Temporal β-diversity patterns were reasonably well explained by climate change but weakly explained by changes in landscape-scale heterogeneity. Climate was shown to have a greater influence on temporal nestedness than replacement patterns over our study period, linking nestedness patterns, as a result of imbalanced gains and losses, to climatic warming and extremes respectively. Important climatic predictors (i.e. growing degree-days) of temporal β-diversity were also identified, and contrasting patterns between the two β-diversity components revealed.
Results suggest climate influences plant species recruitment and establishment processes of Scotland's coastal grasslands, and while species extinctions take time, they are likely to be facilitated by climatic perturbations. Our findings also highlight the importance of distinguishing between different components of β-diversity, disentangling contrasting patterns than can mask one another.
Resumo:
The residence time has long been used as a classification parameter for estuaries and other semi- enclosed water bodies. It aims to quantify the time water remains inside the estuary, being used as an indicator both for pollution assessment and for ecological processes. Estuaries with a short residence time will export nutrients from upstream sources more rapidly then estuaries with longer residence time. On the other hand the residence time determines if micro-algae can stay long enough to generate a bloom. As a consequence, estuaries with very short residence time are expected to have much lower algae blooms, then estuaries with longer residence time. In addition, estuaries with residence times shorter than the doubling time of algae cells will inhibit formation of algae blooms (EPA, 2001). The residence time is also an important issue for processes taking place in the sediment. The fluxes of particulate matter and associated adsorbed species from the water column to the sediment depends of the particle’s vertical velocity, water depth and residence time. This is particularly important for the fine fractions with lower sinking velocities. The question is how to compute the residence time and how does it depend on the computation method adopted.
Resumo:
The impact of urban waste-water and non-point nitrate discharges in estuarine and near-shore coastal waters are analyzed. The study is focused on the effects of applying the European directives 91/271/EEC and 91/676/EEC to these systems. 4 Portuguese estuaries and two coastal lagoons with different characteristics are studied. A modelling system is applied and calibrated in each system. Three nitrate load scenarios are examined. It is shown that the morphologic and hydrodynamic characteristics of the domain largely control the ecological processes in these systems. The primary production limitation factors are split into “biologic” and “hydrodynamic” components. The physical limitation due to hydrodynamic and residence time is the most important factor. The combined limitation of “biologic” factors (temperature, light and nutrients availability) control productivity only in the systems where physical limitation is not important.
Resumo:
This is a thought-provoking contribution on the space of ontological vulnerability as the awareness of being existentially exposed. This space, conceptualised as a space of ‘the middle’ (as opposed, emphatically, to ‘the centre’) offers an opportunity to think away from the sterile debate on eco/anthropocentricity and from such limiting hierarchies as animal/human, human/environmental, natural/artificial. This new, vulnerable position of the middle allows the reconfiguration of ecological processes, and more specifically the position of environmental law in relation to them. Environmental law now finds itself amidst a new, moving, ‘open ecology’ of social, biological and ecological processes. This is a new, radical conceptualisation of what the author has called ‘critical environmental law,’ based upon an epistemology of observation and an ontology of being part of this open ecology. Environmental law, in this light, is simultaneously reformulated as an invitation to disciplinary and ontological openness and yet a call to remain immanent within existing legal structures. This finds expression in four critical environmental positions that set the stage for the further elaboration of a critical environmental law.
Resumo:
La variabilité génétique actuelle est influencée par une combinaison complexe de variables historiques et contemporaines. Dès lors, une interprétation juste de l’impact des processus actuels nécessite une compréhension profonde des processus historiques ayant influencé la variabilité génétique. En se basant sur la prémisse que des populations proches devraient partager une histoire commune récente, nombreuses études, effectuées à petite échelle spatiale, ne prennent pas en considération l’effet potentiel des processus historiques. Cette thèse avait pour but de vérifier la validité de cette prémisse en estimant l’effet de la dispersion historique à grande et à petite échelle spatiale. Le premier volet de cette thèse avait pour but d’évaluer l’impact de la dispersion historique sur la répartition des organismes à grande échelle spatiale. Pour ce faire, les moules d’eau douce du genre flotteurs (Pyganodon spp.) ont servies de modèle biologique. Les moules d'eau douce se dispersent principalement au stade larvaire en tant que parasites des poissons. Une série de modèles nuls ont été développés pour évaluer la co-occurrence entre des parasites et leurs hôtes potenitels. Les associations distinctes du flotteur de Terre-Neuve (P. fragilis) avec des espèces de poissons euryhalins permettent d’expliquer sa répartition. Ces associations distinctes ont également pu favoriser la différenciation entre le flotteur de Terre-Neuve et son taxon soeur : le flotteur de l’Est (P. cataracta). Cette étude a démontré les effets des associations biologiques historiques sur les répartitions à grande échelle spatiale. Le second volet de cette thèse avait pour but d’évaluer l’impact de la dispersion historique sur la variabilité génétique, à petite échelle spatiale. Cette fois, différentes populations de crapet de roche (Ambloplites rupestris) et de crapet soleil (Lepomis gibbosus), dans des drainages adjacents ont servies de modèle biologique. Les différences frappantes observées entre les deux espèces suggèrent des patrons de colonisation opposés. La faible diversité génétique observée en amont des drainages et la forte différenciation observée entre les drainages pour les populations de crapet de roche suggèrent que cette espèce aurait colonisé les drainages à partir d'une source en aval. Au contraire, la faible différenciation et la forte diversité génétique observées en amont des drainages pour les populations de crapet soleil suggèrent une colonisation depuis l’amont, induisant du même coup un faux signal de flux génique entre les drainages. La présente étude a démontré que la dispersion historique peut entraver la capacité d'estimer la connectivité actuelle, à petite échelle spatiale, invalidant ainsi la prémisse testée dans cette thèse. Les impacts des processus historiques sur la variabilité génétique ne sont pas faciles à démontrer. Le troisième volet de cette thèse avait pour but de développer une méthode permettant de les détecter. La méthode proposée est très souple et favorise la comparaison entre la variabilité génétique et plusieurs hypothèses de dispersion. La méthode pourrait donc être utilisée pour comparer des hypothèses de dispersion basées sur le paysage historique et sur le paysage actuel et ainsi permettre l’évaluation des impacts historiques et contemporains sur la variabilité génétique. Les performances de la méthode sont présentées pour plusieurs scénarios de simulations, d’une complexité croissante. Malgré un impact de la différentiation globale, du nombre d’individus ou du nombre de loci échantillonné, la méthode apparaît hautement efficace. Afin d’illustrer le potentiel de la méthode, deux jeux de données empiriques très contrastés, publiés précédemment, ont été ré analysés. Cette thèse a démontré les impacts de la dispersion historique sur la variabilité génétique à différentes échelles spatiales. Les effets historiques potentiels doivent être pris en considération avant d’évaluer les impacts des processus écologiques sur la variabilité génétique. Bref, il faut intégrer l’évolution à l’écologie.
Resumo:
Little is known about juvenile songbird movement in response to timber harvest, particularly in the boreal forest. If clearcut land cover facilitates movement, the availability of resources may increase. However, if clearcut land cover impedes movement, important post-fledging resources may be rendered inaccessible. Using radio telemetry, we tested the hypothesis that regenerating clearcut land cover would affect the movement of recently independent Yellow-rumped Myrtle Warblers (Dendroica coronata coronata) and Blackpoll Warblers (Dendroica striata) differently than forested land cover owing to intrinsic differences in each land-cover type or in how they are perceived. We found that both species moved extensively before migration. We also found that Blackpoll Warblers were quick to exit local areas composed of clearcut land cover and that both species were quick to exit neighborhoods composed of large proportions of clearcut land cover. However, if individuals encountered clearcut land cover when exiting the neighborhood, movement rate was slowed. Effectively, residency time decreased in clearcut neighborhoods and landscape connectivity was impeded by clearcut land cover. Our results suggest that clearcut land cover may represent low-quality habitat for both species during the post-fledging period. Further research is needed to determine if changes in movement behavior associated with landscape structure affect individual condition and higher-level ecological processes.
Resumo:
Considerable attention has been given to the impact of climate change on avian populations over the last decade. In this paper we examine two issues with respect to coastal bird populations in the UK: (1) is there any evidence that current populations are declining due to climate change, and (2) how might we predict the response of populations in the future? We review the cause of population decline in two species associated with saltmarsh habitats. The abundance of Common Redshank Tringa totanus breeding on saltmarsh declined by about 23% between the mid-1980s and mid-1990s, but the decline appears to have been caused by an increase in grazing pressure. The number of Twite Carduelis flavirostris wintering on the coast of East Anglia has declined dramatically over recent decades; there is evidence linking this decline with habitat loss but a causal role for climate change is unclear. These examples illustrate that climate change could be having population-level impacts now, but also show that it is dangerous to become too narrowly focused on single issues affecting coastal birds. Making predictions about how populations might respond to future climate change depends on an adequate understanding of important ecological processes at an appropriate spatial scale. We illustrate this with recent work conducted on the Icelandic population of Black-tailed Godwits Limosa limosa islandica that shows large-scale regulatory processes. Most predictive models to date have focused on local populations (single estuary or a group of neighbouring estuaries). We discuss the role such models might play in risk assessment, and the need for them to be linked to larger-scale ecological processes. We argue that future work needs to focus on spatial scale issues and on linking physical models of coastal environments with important ecological processes.
Resumo:
Background noise should in theory hinder detection of auditory cues associated with approaching danger. We tested whether foraging chaffinches Fringilla coelebs responded to background noise by increasing vigilance, and examined whether this was explained by predation risk compensation or by a novel stimulus hypothesis. The former predicts that only inter-scan interval should be modified in the presence of background noise, not vigilance levels generally. This is because noise hampers auditory cue detection and increases perceived predation risk primarily when in the head-down position, and also because previous tests have shown that only interscan interval is correlated with predator detection ability in this system. Chaffinches only modified interscan interval supporting this hypothesis. At the same time they made significantly fewer pecks when feeding during the background noise treatment and so the increased vigilance led to a reduction in intake rate, suggesting that compensating for the increased predation risk could indirectly lead to a fitness cost. Finally, the novel stimulus hypothesis predicts that chaffinches should habituate to the noise, which did not occur within a trial or over 5 subsequent trials. We conclude that auditory cues may be an important component of the trade-off between vigilance and feeding, and discuss possible implications for anti-predation theory and ecological processes
Resumo:
Considerable attention has been given to the impact of climate change on avian populations over the last decade. In this paper we examine two issues with respect to coastal bird populations in the UK: (1) is there any evidence that current populations are declining due to climate change, and (2) how might we predict the response of populations in the future? We review the cause of population decline in two species associated with saltmarsh habitats. The abundance of Common Redshank Tringa totanus breeding on saltmarsh declined by about 23% between the mid-1980s and mid-1990s, but the decline appears to have been caused by an increase in grazing pressure. The number of Twite Carduelis flavirostris wintering on the coast of East Anglia has declined dramatically over recent decades; there is evidence linking this decline with habitat loss but a causal role for climate change is unclear. These examples illustrate that climate change could be having population-level impacts now, but also show that it is dangerous to become too narrowly focused on single issues affecting coastal birds. Making predictions about how populations might respond to future climate change depends on an adequate understanding of important ecological processes at an appropriate spatial scale. We illustrate this with recent work conducted on the Icelandic population of Black-tailed Godwits Limosa limosa islandica that shows large-scale regulatory processes. Most predictive models to date have focused on local populations (single estuary or a group of neighbouring estuaries). We discuss the role such models might play in risk assessment, and the need for them to be linked to larger-scale ecological processes. We argue that future work needs to focus on spatial scale issues and on linking physical models of coastal environments with important ecological processes.
Resumo:
1. Reductions in resource availability, associated with land-use change and agricultural intensification in the UK and Europe, have been linked with the widespread decline of many farmland bird species over recent decades. However, the underlying ecological processes which link resource availability and population trends are poorly understood. 2. We construct a spatial depletion model to investigate the relationship between the population persistence of granivorous birds within the agricultural landscape and the temporal dynamics of stubble field availability, an important source of winter food for many of those species. 3. The model is capable of accurately predicting the distribution of a given number of finches and buntings amongst patches of different stubble types in an agricultural landscape over the course of a winter and assessing the relative value of different landscapes in terms of resource availability. 4. Sensitivity analyses showed that the model is relatively robust to estimates of energetic requirements, search efficiency and handling time but that daily seed survival estimates have a strong influence on model fit. Understanding resource dynamics in agricultural landscapes is highlighted as a key area for further research. 5. There was a positive relationship between the predicted number of bird days supported by a landscape over-winter and the breeding population trend for yellowhammer Emberiza citrinella, a species for which survival has been identified as the primary driver of population dynamics, but not for linnet Carduelis cannabina, a species for which productivity has been identified as the primary driver of population dynamics. 6. Synthesis and applications. We believe this model can be used to guide the effective delivery of over-winter food resources under agri-environment schemes and to assess the impacts on granivorous birds of changing resource availability associated with novel changes in land use. This could be very important in the future as farming adapts to an increasingly dynamic trading environment, in which demands for increased agricultural production must be reconciled with objectives for environmental protection, including biodiversity conservation.
Resumo:
Abstract: Movements away from the natal or home territory are important to many ecological processes, including gene flow, population regulation, and disease epidemiology, yet quantitative data on these behaviors are lacking. Red foxes exhibit 2 periods of extraterritorial movements: when an individual disperses and when males search neighboring territories for extrapair copulations during the breeding season. Using radiotracking data collected at 5-min interfix intervals, we compared movement parameters, including distance moved, speed of movement, and turning angles, of dispersal and reproductive movements to those made during normal territorial movements; the instantaneous separation distances of dispersing and extraterritorial movements to the movements of resident adults; and the frequency of locations of 95%, 60%, and 30% harmonic mean isopleths of adult fox home territories to randomly generated fox movements. Foxes making reproductive movements traveled farther than when undertaking other types of movement, and dispersal movements were straighter. Reproductive and dispersal movements were faster than territorial movements and also differed in intensity of search and thoroughness. Foxes making dispersal movements avoided direct contact with territorial adults and moved through peripheral areas of territories. The converse was true for reproductive movements. Although similar in some basic characteristics, dispersal and reproductive movements are fundamentally different both behaviorally and spatially and are likely to have different ultimate purposes and contrasting effects on spatial processes such as disease transmission
Resumo:
The emerging discipline of urban ecology is shifting focus from ecological processes embedded within cities to integrative studies of large urban areas as biophysical-social complexes. Yet this discipline lacks a theory. Results from the Baltimore Ecosystem Study, part of the Long Term Ecological Research Network, expose new assumptions and test existing assumptions about urban ecosystems. The findings suggest a broader range of structural and functional relationships than is often assumed for urban ecological systems. We address the relationships between social status and awareness of environmental problems, and between race and environmental hazard. We present patterns of species diversity, riparian function, and stream nitrate loading. In addition, we probe the suitability of land-use models, the diversity of soils, and the potential for urban carbon sequestration. Finally, we illustrate lags between social patterns and vegetation, the biogeochemistry of lawns, ecosystem nutrient retention, and social-biophysical feedbacks. These results suggest a framework for a theory of urban ecosystems.
Resumo:
Dispersal plays a crucial role in a range of evolutionary and ecological processes; hence there is strong motivation to understand its evolution. One key prediction is that the relative benefits of dispersal should be greater when dispersing away from close relatives, because in this case dispersal has the additional benefit of alleviating competition with individuals who share the same dispersal alleles. We tested this prediction for the first time using experimental populations of the opportunistic pathogen Pseudomonas aeruginosa. We measured the fitness of isogenic genotypes that differed only in their dispersal behaviors in both clonal and mixed populations. Consistent with theory, the benefit of dispersal was much higher in clonal populations, and this benefit decreased with increasing growth rate costs associated with dispersal.
Resumo:
This paper presents results of the AQL2004 project, which has been develope within the GOFC-GOLD Latin American network of remote sensing and forest fires (RedLatif). The project intended to obtain monthly burned-land maps of the entire region, from Mexico to Patagonia, using MODIS (moderate-resolution imaging spectroradiometer) reflectance data. The project has been organized in three different phases: acquisition and preprocessing of satellite data; discrimination of burned pixels; and validation of results. In the first phase, input data consisting of 32-day composites of MODIS 500-m reflectance data generated by the Global Land Cover Facility (GLCF) of the University of Maryland (College Park, Maryland, U.S.A.) were collected and processed. The discrimination of burned areas was addressed in two steps: searching for "burned core" pixels using postfire spectral indices and multitemporal change detection and mapping of burned scars using contextual techniques. The validation phase was based on visual analysis of Landsat and CBERS (China-Brazil Earth Resources Satellite) images. Validation of the burned-land category showed an agreement ranging from 30% to 60%, depending on the ecosystem and vegetation species present. The total burned area for the entire year was estimated to be 153 215 km2. The most affected countries in relation to their territory were Cuba, Colombia, Bolivia, and Venezuela. Burned areas were found in most land covers; herbaceous vegetation (savannas and grasslands) presented the highest proportions of burned area, while perennial forest had the lowest proportions. The importance of croplands in the total burned area should be taken with reserve, since this cover presented the highest commission errors. The importance of generating systematic products of burned land areas for different ecological processes is emphasized.
Resumo:
The Atlantic Rain Forest, an important biodiversity hot spot, has faced severe habitat loss since the last century which has resulted in a highly fragmented landscape with a large number of small forest patches (<100 ha). For conservation planning it is essential to understand how current and future forest regeneration depends on ecological processes, fragment size and the connection to the regional seed pool. We have investigated the following questions by applying the forest growth simulation model FORMIND to the situation of the Atlantic Forest in the state of Sao Paulo, SE Brazil: (1) which set of parameters describing the local regeneration and level of density regulation can reproduce the biomass distribution and stem density of an old growth forest in a reserve? (2) Which additional processes apart from those describing the dynamics of an old growth forest, drive forest succession of small isolated fragments? (3) Which role does external seed input play during succession? Therefore, more than 300 tree species have been classified into nine plant functional types (PFTs), which are characterized by maximum potential height and shade tolerance. We differentiate between two seed dispersal modes: (i) local dispersal, i.e. all seedlings originated from fertile trees within the simulated area and (ii) external seed rain. Local seed dispersal has been parameterized following the pattern oriented approach, using biomass estimates of old growth forest. We have found that moderate density regulation is essential to achieve coexistence for a broad range of regeneration parameters. Considering the expected uncertainty and variability in the regeneration processes it is important that the forest dynamics are robust to variations in the regeneration parameters. Furthermore, edge effects such as increased mortality at the border and external seed rain have been necessary to reproduce the patterns for small isolated fragments. Overall, simulated biomass is much lower in the fragments compared to the continuous forest, whereas shade tolerant species are affected most strongly by fragmentation. Our simulations can supplement empirical studies by extrapolating local knowledge on edge effects of fragments to larger temporal and spatial scales. In particular our results show the importance of external seed rain and therefore highlight the importance of structural connectivity between regenerating fragments and mature forest stands. (C) 2009 Elsevier B.V. All rights reserved.