996 resultados para Ecological Genetics


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report on the development and characterization of 14 polymorphic microsatellite loci in the zebra shark (Stegostoma fasciatum). Five tetranucleotide and nine dinucleotide loci were polymorphic with heterozygosities ranging from 0.400 to 0.967 and from three to 22 alleles per locus. Cross-species amplification of these zebra shark primers on four other species of orectolobid sharks was not successful.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A pathological feature of Alzheimer's disease (AD) is an area-specific neuronal loss that may be caused by excitotoxicity-related synaptic dysfunction. Relative expression levels of synaptopbysin, dynamin I, complexins I and II, N-cadherin, and alpha CaMKII were analysed in human brain tissue from AD cases and controls in hippocampus, and inferior temporal and occipital cortices. Synaptophysin and dynamin I are presynaptic terminal proteins not specific to any neurotransmitter system whereas complexin II, N-cadherin, and alpha CaMKII are specific for excitatory synapses. Complexin I is a presynaptic protein localised to inhibitory synapses. There were no significant differences in synaptophysin, dynamin I, N-cadherin, or alpha CaMKII protein levels between AD cases and controls. The complexin proteins were both markedly lower in AD cases than in controls (P < 0.01). Cases were also categorised by APOE genotype. Averaged across areas there was a 36% lowering of presynaptic proteins in AD cases carrying at least one epsilon 4 allele compared with in AD cases lacking the epsilon 4 allele. We infer that synaptic protein level is not indicative of neuronal loss, but the synaptic dysfunction may result from the marked relative loss of the complexins in AD, and lower levels of presynaptic proteins in AD cases with the APOE epsilon 4 allele. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chronic alcohol misuse by human subjects leads to neuronal loss in regions such as the superior frontal cortex (SFC). Propensity to alcoholism is associated with several genes. γ-Aminobutyric acid (GABA)A receptor expression differs between alcoholics and controls, whereas glutamate receptor differences are muted. We determined whether genotype differentiated the regional presentation of GABAA and glutamate-NMDA (N-methyl-d-aspartate) receptors in SFC. Autopsy tissue was obtained from alcoholics without comorbid disease, alcoholics with liver cirrhosis, and matched controls. ADH1C, DRD2B, EAAT2, and APOE genotypes modulated GABAA-β subunit protein expression in SFC toward a less-effective form of the receptor. Most genotypes did not divide alcoholics and controls on glutamate-NMDA receptor pharmacology, although gender and cirrhosis did. Genotype may affect amino acid transmission locally to influence neuronal vulnerability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Australian ghost bat is a large, opportunistic carnivorous species that has undergone a marked range contraction toward more mesic, tropical sites over the past century. Comparison of mitochondrial DNA (mtDNA) control region sequences and six nuclear microsatellite loci in 217 ghost bats from nine populations across subtropical and tropical Australia revealed strong population subdivision (mtDNA phi(ST) = 0.80; microsatellites URST = 0.337). Low-latitude (tropical) populations had higher heterozygosity and less marked phylogeographic structure and lower subdivision among sites within regions (within Northern Territory [NT] and within North Queensland [NQ]) than did populations at higher latitudes (subtropical sites; central Queensland [CQ]), although sampling of geographically proximal breeding sites is unavoidably restricted for the latter. Gene flow among populations within each of the northern regions appears to be male biased in that the difference in population subdivision for mtDNA and microsatellites (NT phi(ST) = 0.39, URST = 0.02; NQ phi(ST) = 0.60, URST = -0.03) is greater than expected from differences in the effective population size of haploid versus diploid loci. The high level of population subdivision across the range of the ghost bat contrasts with evidence for high gene flow in other chiropteran species and may be due to narrow physiological tolerances and consequent limited availability of roosts for ghost bats, particularly across the subtropical and relatively arid regions. This observation is consistent with the hypothesis that the contraction of the species' range is associated with late Holocene climate change. The extreme isolation among higher-latitude populations may predispose them to additional local extinctions if the processes responsible for the range contraction continue to operate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The black-lip pearl oyster Pinctada margaritifera is a protandrous hermaphrodite species. Its economic value has led to the development of controlled hatchery reproduction techniques, although many aspects remain to be optimized. In order to understand reproductive mechanisms and their controlling factors, two independent experiments were designed to test hypotheses of gametogenesis and sex ratio control by environmental and hormonal factors. In one, pearl oysters were exposed under controlled conditions at different combinations of temperature (24 and 28°C) and food level (10,000 and 40,000 cells mL−1); whereas in the other, pearl oysters were conditioned under natural conditions into the lagoon and subjected to successive 17β-estradiol injections (100 μg per injection). Gametogenesis and sex ratio were assessed by histology for each treatment. In parallel, mRNA expressions of nine marker genes of the sexual pathway (pmarg-foxl2, pmarg-c43476, pmarg-c45042, pmarg-c19309, pmarg-c54338, pmarg-vit6, pmarg-zglp1, pmarg-dmrt, and pmarg-fem1-like) were investigated. Maximum maturation was observed in the treatment combining the highest temperature (28°C) and the highest microalgae concentration (40,000 cells mL−1), where the female sex tended to be maintained. Injection of 17β-estradiol induced a significant increase of undetermined stage proportion 2 weeks after the final injection. These results suggest that gametogenesis and gender in adult pearl oysters can be controlled by environmental factors and estrogens. While there were no significant effects on relative gene expression, the 3-gene-pair expression ratio model of the sexual pathway of P. margaritifera, suggest a probable dominance of genetic sex determinism without excluding a mixed sex determination mode (genetic + environmental)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Forest trees, like oaks, rely on high levels of genetic variation to adapt to varying environmental conditions. Thus, genetic variation and its distribution are important for the long-term survival and adaptability of oak populations. Climate change is projected to lead to increased drought and fire events as well as a northward migration of tree species, including oaks. Additionally, decline in oak regeneration has become increasingly concerning since it may lead to decreased gene flow and increased inbreeding levels. This will in turn lead to lowered levels of genetic diversity, negatively affecting the growth and survival of populations. At the same time, populations at the species’ distribution edge, like those in this study, could possess important stores of genetic diversity and adaptive potential, while also being vulnerable to climatic or anthropogenic changes. A survey of the level and distribution of genetic variation and identification of potentially adaptive genes is needed since adaptive genetic variation is essential for their long-term survival. Oaks possess a remarkable characteristic in that they maintain their species identity and specific environmental adaptations despite their propensity to hybridize. Thus, in the face of interspecific gene flow, some areas of the genome remain differentiated due to selection. This characteristic allows the study of local environmental adaptation through genetic variation analyses. Furthermore, using genic markers with known putative functions makes it possible to link those differentiated markers to potential adaptive traits (e.g., flowering time, drought stress tolerance). Demographic processes like gene flow and genetic drift also play an important role in how genes (including adaptive genes) are maintained or spread. These processes are influenced by disturbances, both natural and anthropogenic. An examination of how genetic variation is geographically distributed can display how these genetic processes and geographical disturbances influence genetic variation patterns. For example, the spatial clustering of closely related trees could promote inbreeding with associated negative effects (inbreeding depression), if gene flow is limited. In turn this can have negative consequences for a species’ ability to adapt to changing environmental conditions. In contrast, interspecific hybridization may also allow the transfer of genes between species that increase their adaptive potential in a changing environment. I have studied the ecologically divergent, interfertile red oaks, Quercus rubra and Q. ellipsoidalis, to identify genes with potential roles in adaptation to abiotic stress through traits such as drought tolerance and flowering time, and to assess the level and distribution of genetic variation. I found evidence for moderate gene flow between the two species and low interspecific genetic differences at most genetic markers (Lind and Gailing 2013). However, the screening of genic markers with potential roles in phenology and drought tolerance led to the identification of a CONSTANS-like (COL) gene, a candidate gene for flowering time and growth. This marker, located in the coding region of the gene, was highly differentiated between the two species in multiple geographical areas, despite interspecific gene flow, and may play a role in reproductive isolation and adaptive divergence between the two species (Lind-Riehl et al. 2014). Since climate change could result in a northward migration of trees species like oaks, this gene could be important in maintaining species identity despite increased contact zones between species (e.g., increased gene flow). Finally I examined differences in spatial genetic structure (SGS) and genetic variation between species and populations subjected to different management strategies and natural disturbances. Diverse management activities combined with various natural disturbances as well as species specific life history traits influenced SGS patterns and inbreeding levels (Lind-Riehl and Gailing submitted).