998 resultados para Earth rotation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of the judiciary in common law systems is to create law, interpret law and uphold the law. As such decisions by courts on matters related to ecologically sustainable development, natural resource use and management and climate change make an important contribution to earth jurisprudence. There are examples where judicial decisions further the goals of earth jurisprudence and examples where decisions go against the principles of earth jurisprudence. This presentation will explore judicial approaches to standing in Australia and America. The paper will explore two trends in each jurisdiction. Approaches by American courts to standing will be examined in reference to climate change and environmental justice litigation. While Australian approaches to standing will be examined in the context of public interest litigation and environmental criminal negligence cases. The presentation will draw some conclusions about the role of standing in each of these cases and implications of this for earth jurisprudence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The drawdown of reservoirs can significantly affect the stability of upstream slopes of earth dams. This is due to the removal of the balancing hydraulic forces acting on the dams and the undrained condition within the upstream slope soils. In such scenarios, the stability of the slopes can be influenced by a range of factors including drawdown rates, slope inclination and soil properties. This paper investigates the effects of drawdown rate, saturated hydraulic conductivity and unsaturated shear strength of dam materials on the stability of the upstream slope of an earth dam. In this study, the analysis of pore-water pressure changes within the upstream slope during reservoir drawdown was coupled with the slope stability analysis using the general limit equilibrium method. The results of the analysis suggested that a decrease in the reservoir water level caused the stability of the upstream slope to decrease. The dam embankment constructed with highly permeable soil was found to be more stable during drawdown scenarios, compared to others. Further, lower drawdown rates resulted in a higher safety factor for the upstream slope. Also, the safety factor of the slope calculated using saturated shear strength properties of the dam materials was slightly higher than that calculated using unsaturated shear strength properties. In general, for all the scenarios analysed, the lowest safety factor was found to be at the reservoir water level of about 2/3 of drawdown regime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large igneous provinces (LIPs) host the most frequently recurring, largest volume basaltic & silicic eruptions on Earth. The largest volume (>1000 km^3 DRE) and magnitude (>M8) eruptions produce areally extensive (10^4-10^5 km^2) basaltic flow fields and sills, and silicic ignimbrites that are the main LIP building blocks. Basaltic and silicic eruptions have comparable magnitudes, but silicic ignimbrite volumes may be significantly underestimated due to unrecognized and correlated, but voluminous co-ignimbrite ash deposits. Magma composition is no barrier to individual eruption volume. Despite similar magnitudes, flood basaltic and silicic eruptions are very different in eruption mechanism, duration, intensity, vent configuration, and emplacement style. Flood basalts are dominantly effusive Hawaiian-Strombolian, with magma discharge rates of ~10^7-10^8 kg s^-1, and produce dominantly compound pahoehoe flow fields over eruption durations most likely >10 yrs. Most silicic eruptions are moderately to highly explosive, producing cocurrent pyroclastic fountains (rarely Plinian) and suggested to be of short-duration (hours to days) and high intensity (~10^11 kg s^-1). Eruption frequencies are elevated for largemagnitude eruptions of both magma types during LIP formation. In basalt-dominated provinces, large magnitude (>M8) eruptions have much shorter recurrence intervals (10^3-10^4 years) than similar magnitude silicic eruptions (~10^5 years). The huge volumes of magma erupted rapidly in LIPs raises several unresolved issues in terms of locus of magma generation and storage (if any) in the crust prior to eruption, the paths and rates of ascent from magma reservoirs to the surface, and relative aerosol contributions to the stratosphere from the flood basaltic and rhyolitic eruptions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pricing greenhouse gas emissions is a burgeoning and possibly lucrative financial means for climate change mitigation. Emissions pricing is being used to fund emissions-abatement technologies and to modify land management to improve carbon sequestration and retention. Here we discuss the principal land-management options under existing and realistic future emissions-price legislation in Australia, and examine them with respect to their anticipated direct and indirect effects on biodiversity. The main ways in which emissions price-driven changes to land management can affect biodiversity are through policies and practices for (1) environmental plantings for carbon sequestration, (2) native regrowth, (3) fire management, (4) forestry, (5) agricultural practices (including cropping and grazing), and (6) feral animal control. While most land-management options available to reduce net greenhouse gas emissions offer clear advantages to increase the viability of native biodiversity, we describe several caveats regarding potentially negative outcomes, and outline components that need to be considered if biodiversity is also to benefit from the new carbon economy. Carbon plantings will only have real biodiversity value if they comprise appropriate native tree species and provide suitable habitats and resources for valued fauna. Such plantings also risk severely altering local hydrology and reducing water availability. Management of regrowth post-agricultural abandonment requires setting appropriate baselines and allowing for thinning in certain circumstances, and improvements to forestry rotation lengths would likely increase carbon-retention capacity and biodiversity value. Prescribed burning to reduce the frequency of high-intensity wildfires in northern Australia is being used as a tool to increase carbon retention. Fire management in southern Australia is not readily amenable for maximising carbon storage potential, but will become increasingly important for biodiversity conservation as the climate warms. Carbon price-based modifications to agriculture that would benefit biodiversity include reductions in tillage frequency and livestock densities, reductions in fertiliser use, and retention and regeneration of native shrubs; however, anticipated shifts to exotic perennial grass species such as buffel grass and kikuyu could have net negative implications for native biodiversity. Finally, it is unlikely that major reductions in greenhouse gas emissions arising from feral animal control are possible, even though reduced densities of feral herbivores will benefit Australian biodiversity greatly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent advances in computational geodynamics are applied to explore the link between Earth’s heat, its chemistry and its mechanical behavior. Computational thermal-mechanical solutions are now allowing us to understand Earth patterns by solving the basic physics of heat transfer. This approach is currently used to solve basic convection patterns of terrestrial planets. Applying the same methodology to smaller scales delivers promising similarities between observed and predicted structures which are often the site of mineral deposits. The new approach involves a fully coupled solution to the energy, momentum and continuity equations of the system at all scales, allowing the prediction of fractures, shear zones and other typical geological patterns out of a randomly perturbed initial state. The results of this approach are linking a global geodynamic mechanical framework over regional-scale mineral deposits down to the underlying micro-scale processes. Ongoing work includes the challenge of incorporating chemistry into the formulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectroscopy complimented with infrared spectroscopy has been used to study the rare earth based mineral huanghoite with possible formula given as BaCe(CO3)2F and compared with the Raman spectra of a series of selected natural halogenated carbonates from different origins including bastnasite, parisite and northupite. The Raman spectrum of huanghoite displays three bands are at 1072, 1084 and 1091 cm−1 attributed to the symmetric stretching vibration. The observation of three symmetric stretching vibrations is very unusual. The position of symmetric stretching vibration varies with mineral composition. Infrared spectroscopy of huanghoite show bands at 1319, 1382, 1422 and 1470 cm−1. No Raman bands of huanghoite were observed in these positions. Raman spectra of bastnasite, parisite and northupite show a single band at 1433, 1420 and 1554 cm−1 assigned to the ν3 (CO3)2− antisymmetric stretching mode. The observation of additional Raman bands for the ν3 modes for some halogenated carbonates is significant in that it shows distortion of the carbonate anion in the mineral structure. Four Raman bands for huanghoite are observed at 687, 704, 718 and 730 cm−1and assigned to the (CO3)2− ν2 bending modes. Raman bands are observed for huanghoite at around 627 cm−1 and are assigned to the (CO3)2− ν4 bending modes. Raman bands are observed for the carbonate ν4 in phase bending modes at 722 cm−1 for bastnasite, 736 and 684 cm−1 for parisite, 714 cm−1 for northupite. Raman bands for huanghoite observed at 3259, 3484 and 3589 cm−1 are attributed to water stretching bands. Multiple bands are observed in the OH stretching region for bastnasite and parisite indicating the presence of water and OH units in their mineral structure. Vibrational spectroscopy enables new information on the structure of huanghoite to be assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose The eye rotation approach for measuring peripheral eye length leads to concern about whether the rotation influences results, such as through pressure exerted by eyelids or extra-ocular muscles. This study investigated whether this approach is valid. Methods Peripheral eye lengths were measured with a Lenstar LS 900 biometer for eye rotation and no-eye rotation conditions (head rotation for horizontal meridian and instrument rotation for vertical meridian). Measurements were made for 23 healthy young adults along the horizontal visual field (±30°) and, for a subset of eight participants along the vertical visual field (±25°). To investigate the influence of the duration of eye rotation, for six participants measurements were made at 0, 60, 120, 180 and 210 s after eye rotation to ±30° along horizontal and vertical visual fields. Results Peripheral eye lengths were not significantly different for the conditions along the vertical meridian (F1,7 = 0.16, p = 0.71). The peripheral eye lengths for the conditions were significantly different along the horizontal meridian (F1,22 = 4.85, p = 0.04), although not at individual positions (p ≥ 0.10) and were not important. There were no apparent differences between the emmetropic and myopic groups. There was no significant change in eye length at any position after maintaining position for 210 s. Conclusion Eye rotation and no-eye rotation conditions were similar for measuring peripheral eye lengths along horizontal and vertical visual field meridians at ±30° and ±25°, respectively. Either condition can be used to estimate retinal shape from peripheral eye lengths.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbonatites are known to contain the highest concentrations of rare-earth elements (REE) among all igneous rocks. The REE distribution of carbonatites is commonly believed to be controlled by that of the rock forming Ca minerals (i.e., calcite, dolomite, and ankerite) and apatite because of their high modal content and tolerance for the substitution of Ca by light REE (LREE). Contrary to this conjecture, calcite from the Miaoya carbonatite (China), analyzed in situ by laser-ablation inductively-coupled-plasma mass-spectrometry, is characterized by low REE contents (100–260 ppm) and relatively !at chondrite-normalized REE distribution patterns [average (La/Yb)CN=1.6]. The carbonatite contains abundant REE-rich minerals, including monazite and !uorapatite, both precipitated earlier than the REE-poor calcite, and REE-fluorocarbonates that postdated the calcite. Hydrothermal REE-bearing !uorite and barite veins are not observed at Miaoya. The textural and analytical evidence indicates that the initially high concentrations of REE and P in the carbonatitic magma facilitated early precipitation of REE-rich phosphates. Subsequent crystallization of REE-poor calcite led to enrichment of the residual liquid in REE, particularly LREE. This implies that REE are generally incompatible with respect to calcite and the calcite/melt partition coefficients for heavy REE (HREE) are significantly greater than those for LREE. Precipitation of REE-fluorocarbonates late in the evolutionary history resulted in depletion of the residual liquid in LREE, as manifested by the development of HREE-enriched late-stage calcite [(La/Yb)CN=0.7] in syenites associated with the carbonatite. The observed variations of REE distribution between calcite and whole rocks are interpreted to arise from multistage fractional crystallization (phosphates!calcite!REE-!uorocarbonates) from an initially REE-rich carbonatitic liquid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a total solar eclipse, the Moon completely covers the Sun, casting a shadow several hundred km wide across the face of the Earth. This paper describes observations of the 14 November 2012 total eclipse of the Sun visible from north Queensland, Australia. The edge of the umbra was captured on video during totality, and this video is provided for teaching purposes. A series of simple 'kitchen' experiments are described which demonstrate the 'sunset' effect seen on the horizon during a total solar eclipse and also the curved umbra seen in the sky when the eclipsed Sun is relatively close to the horizon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple but accurate method for measuring the Earth’s radius using a video camera is described. A video camera was used to capture a shadow rising up the wall of a tall building at sunset. A free program called ImageJ was used to measure the time it took the shadow to rise a known distance up the building. The time, distance and length of the sidereal day were used to calculate the radius of the Earth. The radius was measured as 6394.3 +/- 118 km, which is within 1.8% of the accepted average value of 6371 km and well within the experimental error. The experiment is suitable as a high school or university project and should produce a value for Earth’s radius within a few per cent at latitudes towards the equator, where at some times of the year the ecliptic is approximately normal to the horizon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Review of Elizabeth Grosz’s Chaos, Territory, Art: Deleuze and the Framing of the Earth

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measuring Earth material behaviour on time scales of millions of years transcends our current capability in the laboratory. We review an alternative path considering multiscale and multiphysics approaches with quantitative structure-property relationships. This approach allows a sound basis to incorporate physical principles such as chemistry, thermodynamics, diffusion and geometry-energy relations into simulations and data assimilation on the vast range of length and time scales encountered in the Earth. We identify key length scales for Earth systems processes and find a substantial scale separation between chemical, hydrous and thermal diffusion. We propose that this allows a simplified two-scale analysis where the outputs from the micro-scale model can be used as inputs for meso-scale simulations, which then in turn becomes the micro-model for the next scale up. We present two fundamental theoretical approaches to link the scales through asymptotic homogenisation from a macroscopic thermodynamic view and percolation renormalisation from a microscopic, statistical mechanics view.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to understand and predict how thermal, hydrological,mechanical and chemical (THMC) processes interact is fundamental to many research initiatives and industrial applications. We present (1) a new Thermal– Hydrological–Mechanical–Chemical (THMC) coupling formulation, based on non-equilibrium thermodynamics; (2) show how THMC feedback is incorporated in the thermodynamic approach; (3) suggest a unifying thermodynamic framework for multi-scaling; and (4) formulate a new rationale for assessing upper and lower bounds of dissipation for THMC processes. The technique is based on deducing time and length scales suitable for separating processes using a macroscopic finite time thermodynamic approach. We show that if the time and length scales are suitably chosen, the calculation of entropic bounds can be used to describe three different types of material and process uncertainties: geometric uncertainties,stemming from the microstructure; process uncertainty, stemming from the correct derivation of the constitutive behavior; and uncertainties in time evolution, stemming from the path dependence of the time integration of the irreversible entropy production. Although the approach is specifically formulated here for THMC coupling we suggest that it has a much broader applicability. In a general sense it consists of finding the entropic bounds of the dissipation defined by the product of thermodynamic force times thermodynamic flux which in material sciences corresponds to generalized stress and generalized strain rates, respectively.