952 resultados para Early warning systems
Resumo:
Dengue fever is a mosquito-borne viral disease estimated to cause about 230 million infections worldwide every year, of which 25,000 are fatal. Global incidence has risen rapidly in recent decades with some 3.6 billion people, over half of the world's population, now at risk, mainly in urban centres of the tropics and subtropics. Demographic and societal changes, in particular urbanization, globalization, and increased international travel, are major contributors to the rise in incidence and geographic expansion of dengue infections. Major research gaps continue to hamper the control of dengue. The European Commission launched a call under the 7th Framework Programme with the title of 'Comprehensive control of Dengue fever under changing climatic conditions'. Fourteen partners from several countries in Europe, Asia, and South America formed a consortium named 'DengueTools' to respond to the call to achieve better diagnosis, surveillance, prevention, and predictive models and improve our understanding of the spread of dengue to previously uninfected regions (including Europe) in the context of globalization and climate change. The consortium comprises 12 work packages to address a set of research questions in three areas: Research area 1: Develop a comprehensive early warning and surveillance system that has predictive capability for epidemic dengue and benefits from novel tools for laboratory diagnosis and vector monitoring. Research area 2: Develop novel strategies to prevent dengue in children. Research area 3: Understand and predict the risk of global spread of dengue, in particular the risk of introduction and establishment in Europe, within the context of parameters of vectorial capacity, global mobility, and climate change. In this paper, we report on the rationale and specific study objectives of 'DengueTools'. DengueTools is funded under the Health theme of the Seventh Framework Programme of the European Community, Grant Agreement Number: 282589 Dengue Tools.
Resumo:
South Tyrol is a region that has been often affected by various mountain hazards such as floods, flash floods, debris flows, rock falls, and snow avalanches. Furthermore, areas located in lower altitudes are often influenced by high temperatures and heat waves. Climate change is expected to influence the frequency, magnitude, and spatial extent of these natural phenomena. For this reason, local authorities and other stakeholders are in need of tools that can enable them to reduce the risk posed by these processes. In the present study, a variety of methods are applied at local level in different places in South Tyrol that aim at: (1) the assessment of future losses caused by the occurrence of debris flows by using a vulnerability curve, (2) the assessment of social vulnerability based on the risk awareness of the exposed people to floods, and (3) the assessment of spatial exposure and social vulnerability of the exposed population to heat waves. The results show that, in South Tyrol, the risk to a number of hazards can be reduced by: (1) improving documentation for past events in order to improve existing vulnerability curves and the assessment of future losses, (2) raising citizens' awareness and responsibility to improve coping capacity to floods, and (3) extending heat wave early warning systems to more low-lying areas of South Tyrol.
Resumo:
Dentro del campo de la ciudad como lugar se analiza el concepto de planificación territorial y planeamiento espacial. Flooding is one of the main risks associated to many urban settlements in Spain and, indeed, elsewhere. The location of cities has traditionally ignored this type of risk as other locational criteria prevailed (communications, crop yields, etc.). Defence engineering has been the customary way to offset the risk but, nowadays, the opportunity costs of engineering works in urban areas has highlighted the interest of “soft measures” based on prevention. Early warning systems plus development planning controls rank among the most favoured ones. This paper reflects the results of a recent EU-financed research project on alternative measures geared to the enhancement of urban resilience against flooding. A city study in Spain is used as example of those measures.
Resumo:
La presente Tesis constituye un avance en el conocimiento de los efectos de la variabilidad climática en los cultivos en la Península Ibérica (PI). Es bien conocido que la temperatura del océano, particularmente de la región tropical, es una de las variables más convenientes para ser utilizado como predictor climático. Los océanos son considerados como la principal fuente de almacenamiento de calor del planeta debido a la alta capacidad calorífica del agua. Cuando se libera esta energía, altera los regímenes globales de circulación atmosférica por mecanismos de teleconexión. Estos cambios en la circulación general de la atmósfera afectan a la temperatura, precipitación, humedad, viento, etc., a escala regional, los cuales afectan al crecimiento, desarrollo y rendimiento de los cultivos. Para el caso de Europa, esto implica que la variabilidad atmosférica en una región específica se asocia con la variabilidad de otras regiones adyacentes y/o remotas, como consecuencia Europa está siendo afectada por los patrones de circulaciones globales, que a su vez, se ven afectados por patrones oceánicos. El objetivo general de esta tesis es analizar la variabilidad del rendimiento de los cultivos y su relación con la variabilidad climática y teleconexiones, así como evaluar su predictibilidad. Además, esta Tesis tiene como objetivo establecer una metodología para estudiar la predictibilidad de las anomalías del rendimiento de los cultivos. El análisis se centra en trigo y maíz como referencia para otros cultivos de la PI, cultivos de invierno en secano y cultivos de verano en regadío respectivamente. Experimentos de simulación de cultivos utilizando una metodología en cadena de modelos (clima + cultivos) son diseñados para evaluar los impactos de los patrones de variabilidad climática en el rendimiento y su predictibilidad. La presente Tesis se estructura en dos partes: La primera se centra en el análisis de la variabilidad del clima y la segunda es una aplicación de predicción cuantitativa de cosechas. La primera parte está dividida en 3 capítulos y la segundo en un capitulo cubriendo los objetivos específicos del presente trabajo de investigación. Parte I. Análisis de variabilidad climática El primer capítulo muestra un análisis de la variabilidad del rendimiento potencial en una localidad como indicador bioclimático de las teleconexiones de El Niño con Europa, mostrando su importancia en la mejora de predictibilidad tanto en clima como en agricultura. Además, se presenta la metodología elegida para relacionar el rendimiento con las variables atmosféricas y oceánicas. El rendimiento de los cultivos es parcialmente determinado por la variabilidad climática atmosférica, que a su vez depende de los cambios en la temperatura de la superficie del mar (TSM). El Niño es el principal modo de variabilidad interanual de la TSM, y sus efectos se extienden en todo el mundo. Sin embargo, la predictibilidad de estos impactos es controversial, especialmente aquellos asociados con la variabilidad climática Europea, que se ha encontrado que es no estacionaria y no lineal. Este estudio mostró cómo el rendimiento potencial de los cultivos obtenidos a partir de datos de reanálisis y modelos de cultivos sirve como un índice alternativo y más eficaz de las teleconexiones de El Niño, ya que integra las no linealidades entre las variables climáticas en una única serie temporal. Las relaciones entre El Niño y las anomalías de rendimiento de los cultivos son más significativas que las contribuciones individuales de cada una de las variables atmosféricas utilizadas como entrada en el modelo de cultivo. Además, la no estacionariedad entre El Niño y la variabilidad climática europea se detectan con mayor claridad cuando se analiza la variabilidad de los rendimiento de los cultivos. La comprensión de esta relación permite una cierta predictibilidad hasta un año antes de la cosecha del cultivo. Esta predictibilidad no es constante, sino que depende tanto la modulación de la alta y baja frecuencia. En el segundo capítulo se identifica los patrones oceánicos y atmosféricos de variabilidad climática que afectan a los cultivos de verano en la PI. Además, se presentan hipótesis acerca del mecanismo eco-fisiológico a través del cual el cultivo responde. Este estudio se centra en el análisis de la variabilidad del rendimiento de maíz en la PI para todo el siglo veinte, usando un modelo de cultivo calibrado en 5 localidades españolas y datos climáticos de reanálisis para obtener series temporales largas de rendimiento potencial. Este estudio evalúa el uso de datos de reanálisis para obtener series de rendimiento de cultivos que dependen solo del clima, y utilizar estos rendimientos para analizar la influencia de los patrones oceánicos y atmosféricos. Los resultados muestran una gran fiabilidad de los datos de reanálisis. La distribución espacial asociada a la primera componente principal de la variabilidad del rendimiento muestra un comportamiento similar en todos los lugares estudiados de la PI. Se observa una alta correlación lineal entre el índice de El Niño y el rendimiento, pero no es estacionaria en el tiempo. Sin embargo, la relación entre la temperatura del aire y el rendimiento se mantiene constante a lo largo del tiempo, siendo los meses de mayor influencia durante el período de llenado del grano. En cuanto a los patrones atmosféricos, el patrón Escandinavia presentó una influencia significativa en el rendimiento en PI. En el tercer capítulo se identifica los patrones oceánicos y atmosféricos de variabilidad climática que afectan a los cultivos de invierno en la PI. Además, se presentan hipótesis acerca del mecanismo eco-fisiológico a través del cual el cultivo responde. Este estudio se centra en el análisis de la variabilidad del rendimiento de trigo en secano del Noreste (NE) de la PI. La variabilidad climática es el principal motor de los cambios en el crecimiento, desarrollo y rendimiento de los cultivos, especialmente en los sistemas de producción en secano. En la PI, los rendimientos de trigo son fuertemente dependientes de la cantidad de precipitación estacional y la distribución temporal de las mismas durante el periodo de crecimiento del cultivo. La principal fuente de variabilidad interanual de la precipitación en la PI es la Oscilación del Atlántico Norte (NAO), que se ha relacionado, en parte, con los cambios en la temperatura de la superficie del mar en el Pacífico Tropical (El Niño) y el Atlántico Tropical (TNA). La existencia de cierta predictibilidad nos ha animado a analizar la posible predicción de los rendimientos de trigo en la PI utilizando anomalías de TSM como predictor. Para ello, se ha utilizado un modelo de cultivo (calibrado en dos localidades del NE de la PI) y datos climáticos de reanálisis para obtener series temporales largas de rendimiento de trigo alcanzable y relacionar su variabilidad con anomalías de la TSM. Los resultados muestran que El Niño y la TNA influyen en el desarrollo y rendimiento del trigo en el NE de la PI, y estos impactos depende del estado concurrente de la NAO. Aunque la relación cultivo-TSM no es igual durante todo el periodo analizado, se puede explicar por un mecanismo eco-fisiológico estacionario. Durante la segunda mitad del siglo veinte, el calentamiento (enfriamiento) en la superficie del Atlántico tropical se asocia a una fase negativa (positiva) de la NAO, que ejerce una influencia positiva (negativa) en la temperatura mínima y precipitación durante el invierno y, por lo tanto, aumenta (disminuye) el rendimiento de trigo en la PI. En relación con El Niño, la correlación más alta se observó en el período 1981 -2001. En estas décadas, los altos (bajos) rendimientos se asocian con una transición El Niño - La Niña (La Niña - El Niño) o con eventos de El Niño (La Niña) que están finalizando. Para estos eventos, el patrón atmosférica asociada se asemeja a la NAO, que también influye directamente en la temperatura máxima y precipitación experimentadas por el cultivo durante la floración y llenado de grano. Los co- efectos de los dos patrones de teleconexión oceánicos ayudan a aumentar (disminuir) la precipitación y a disminuir (aumentar) la temperatura máxima en PI, por lo tanto el rendimiento de trigo aumenta (disminuye). Parte II. Predicción de cultivos. En el último capítulo se analiza los beneficios potenciales del uso de predicciones climáticas estacionales (por ejemplo de precipitación) en las predicciones de rendimientos de trigo y maíz, y explora métodos para aplicar dichos pronósticos climáticos en modelos de cultivo. Las predicciones climáticas estacionales tienen un gran potencial en las predicciones de cultivos, contribuyendo de esta manera a una mayor eficiencia de la gestión agrícola, seguridad alimentaria y de subsistencia. Los pronósticos climáticos se expresan en diferentes formas, sin embargo todos ellos son probabilísticos. Para ello, se evalúan y aplican dos métodos para desagregar las predicciones climáticas estacionales en datos diarios: 1) un generador climático estocástico condicionado (predictWTD) y 2) un simple re-muestreador basado en las probabilidades del pronóstico (FResampler1). Los dos métodos se evaluaron en un caso de estudio en el que se analizaron los impactos de tres escenarios de predicciones de precipitación estacional (predicción seco, medio y lluvioso) en el rendimiento de trigo en secano, sobre las necesidades de riego y rendimiento de maíz en la PI. Además, se estimó el margen bruto y los riesgos de la producción asociada con las predicciones de precipitación estacional extremas (seca y lluviosa). Los métodos predWTD y FResampler1 usados para desagregar los pronósticos de precipitación estacional en datos diarios, que serán usados como inputs en los modelos de cultivos, proporcionan una predicción comparable. Por lo tanto, ambos métodos parecen opciones factibles/viables para la vinculación de los pronósticos estacionales con modelos de simulación de cultivos para establecer predicciones de rendimiento o las necesidades de riego en el caso de maíz. El análisis del impacto en el margen bruto de los precios del grano de los dos cultivos (trigo y maíz) y el coste de riego (maíz) sugieren que la combinación de los precios de mercado previstos y la predicción climática estacional pueden ser una buena herramienta en la toma de decisiones de los agricultores, especialmente en predicciones secas y/o localidades con baja precipitación anual. Estos métodos permiten cuantificar los beneficios y riesgos de los agricultores ante una predicción climática estacional en la PI. Por lo tanto, seríamos capaces de establecer sistemas de alerta temprana y diseñar estrategias de adaptación del manejo del cultivo para aprovechar las condiciones favorables o reducir los efectos de condiciones adversas. La utilidad potencial de esta Tesis es la aplicación de las relaciones encontradas para predicción de cosechas de la próxima campaña agrícola. Una correcta predicción de los rendimientos podría ayudar a los agricultores a planear con antelación sus prácticas agronómicas y todos los demás aspectos relacionados con el manejo de los cultivos. Esta metodología se puede utilizar también para la predicción de las tendencias futuras de la variabilidad del rendimiento en la PI. Tanto los sectores públicos (mejora de la planificación agrícola) como privados (agricultores, compañías de seguros agrarios) pueden beneficiarse de esta mejora en la predicción de cosechas. ABSTRACT The present thesis constitutes a step forward in advancing of knowledge of the effects of climate variability on crops in the Iberian Peninsula (IP). It is well known that ocean temperature, particularly the tropical ocean, is one of the most convenient variables to be used as climate predictor. Oceans are considered as the principal heat storage of the planet due to the high heat capacity of water. When this energy is released, it alters the global atmospheric circulation regimes by teleconnection1 mechanisms. These changes in the general circulation of the atmosphere affect the regional temperature, precipitation, moisture, wind, etc., and those influence crop growth, development and yield. For the case of Europe, this implies that the atmospheric variability in a specific region is associated with the variability of others adjacent and/or remote regions as a consequence of Europe being affected by global circulations patterns which, in turn, are affected by oceanic patterns. The general objective of this Thesis is to analyze the variability of crop yields at climate time scales and its relation to the climate variability and teleconnections, as well as to evaluate their predictability. Moreover, this Thesis aims to establish a methodology to study the predictability of crop yield anomalies. The analysis focuses on wheat and maize as a reference crops for other field crops in the IP, for winter rainfed crops and summer irrigated crops respectively. Crop simulation experiments using a model chain methodology (climate + crop) are designed to evaluate the impacts of climate variability patterns on yield and its predictability. The present Thesis is structured in two parts. The first part is focused on the climate variability analyses, and the second part is an application of the quantitative crop forecasting for years that fulfill specific conditions identified in the first part. This Thesis is divided into 4 chapters, covering the specific objectives of the present research work. Part I. Climate variability analyses The first chapter shows an analysis of potential yield variability in one location, as a bioclimatic indicator of the El Niño teleconnections with Europe, putting forward its importance for improving predictability in both climate and agriculture. It also presents the chosen methodology to relate yield with atmospheric and oceanic variables. Crop yield is partially determined by atmospheric climate variability, which in turn depends on changes in the sea surface temperature (SST). El Niño is the leading mode of SST interannual variability, and its impacts extend worldwide. Nevertheless, the predictability of these impacts is controversial, especially those associated with European climate variability, which have been found to be non-stationary and non-linear. The study showed how potential2 crop yield obtained from reanalysis data and crop models serves as an alternative and more effective index of El Niño teleconnections because it integrates the nonlinearities between the climate variables in a unique time series. The relationships between El Niño and crop yield anomalies are more significant than the individual contributions of each of the atmospheric variables used as input in the crop model. Additionally, the non-stationarities between El Niño and European climate variability are more clearly detected when analyzing crop-yield variability. The understanding of this relationship allows for some predictability up to one year before the crop is harvested. This predictability is not constant, but depends on both high and low frequency modulation. The second chapter identifies the oceanic and atmospheric patterns of climate variability affecting summer cropping systems in the IP. Moreover, hypotheses about the eco-physiological mechanism behind crop response are presented. It is focused on an analysis of maize yield variability in IP for the whole twenty century, using a calibrated crop model at five contrasting Spanish locations and reanalyses climate datasets to obtain long time series of potential yield. The study tests the use of reanalysis data for obtaining only climate dependent time series of simulated crop yield for the whole region, and to use these yield to analyze the influences of oceanic and atmospheric patterns. The results show a good reliability of reanalysis data. The spatial distribution of the leading principal component of yield variability shows a similar behaviour over all the studied locations in the IP. The strong linear correlation between El Niño index and yield is remarkable, being this relation non-stationary on time, although the air temperature-yield relationship remains on time, being the highest influences during grain filling period. Regarding atmospheric patterns, the summer Scandinavian pattern has significant influence on yield in IP. The third chapter identifies the oceanic and atmospheric patterns of climate variability affecting winter cropping systems in the IP. Also, hypotheses about the eco-physiological mechanism behind crop response are presented. It is focused on an analysis of rainfed wheat yield variability in IP. Climate variability is the main driver of changes in crop growth, development and yield, especially for rainfed production systems. In IP, wheat yields are strongly dependent on seasonal rainfall amount and temporal distribution of rainfall during the growing season. The major source of precipitation interannual variability in IP is the North Atlantic Oscillation (NAO) which has been related in part with changes in the Tropical Pacific (El Niño) and Atlantic (TNA) sea surface temperature (SST). The existence of some predictability has encouraged us to analyze the possible predictability of the wheat yield in the IP using SSTs anomalies as predictor. For this purpose, a crop model with a site specific calibration for the Northeast of IP and reanalysis climate datasets have been used to obtain long time series of attainable wheat yield and relate their variability with SST anomalies. The results show that El Niño and TNA influence rainfed wheat development and yield in IP and these impacts depend on the concurrent state of the NAO. Although crop-SST relationships do not equally hold on during the whole analyzed period, they can be explained by an understood and stationary ecophysiological mechanism. During the second half of the twenty century, the positive (negative) TNA index is associated to a negative (positive) phase of NAO, which exerts a positive (negative) influence on minimum temperatures (Tmin) and precipitation (Prec) during winter and, thus, yield increases (decreases) in IP. In relation to El Niño, the highest correlation takes place in the period 1981-2001. For these decades, high (low) yields are associated with an El Niño to La Niña (La Niña to El Niño) transitions or to El Niño events finishing. For these events, the regional associated atmospheric pattern resembles the NAO, which also influences directly on the maximum temperatures (Tmax) and precipitation experienced by the crop during flowering and grain filling. The co-effects of the two teleconnection patterns help to increase (decrease) the rainfall and decrease (increase) Tmax in IP, thus on increase (decrease) wheat yield. Part II. Crop forecasting The last chapter analyses the potential benefits for wheat and maize yields prediction from using seasonal climate forecasts (precipitation), and explores methods to apply such a climate forecast to crop models. Seasonal climate prediction has significant potential to contribute to the efficiency of agricultural management, and to food and livelihood security. Climate forecasts come in different forms, but probabilistic. For this purpose, two methods were evaluated and applied for disaggregating seasonal climate forecast into daily weather realizations: 1) a conditioned stochastic weather generator (predictWTD) and 2) a simple forecast probability resampler (FResampler1). The two methods were evaluated in a case study where the impacts of three scenarios of seasonal rainfall forecasts on rainfed wheat yield, on irrigation requirements and yields of maize in IP were analyzed. In addition, we estimated the economic margins and production risks associated with extreme scenarios of seasonal rainfall forecasts (dry and wet). The predWTD and FResampler1 methods used for disaggregating seasonal rainfall forecast into daily data needed by the crop simulation models provided comparable predictability. Therefore both methods seem feasible options for linking seasonal forecasts with crop simulation models for establishing yield forecasts or irrigation water requirements. The analysis of the impact on gross margin of grain prices for both crops and maize irrigation costs suggests the combination of market prices expected and the seasonal climate forecast can be a good tool in farmer’s decision-making, especially on dry forecast and/or in locations with low annual precipitation. These methodologies would allow quantifying the benefits and risks of a seasonal weather forecast to farmers in IP. Therefore, we would be able to establish early warning systems and to design crop management adaptation strategies that take advantage of favorable conditions or reduce the effect of adverse conditions. The potential usefulness of this Thesis is to apply the relationships found to crop forecasting on the next cropping season, suggesting opportunity time windows for the prediction. The methodology can be used as well for the prediction of future trends of IP yield variability. Both public (improvement of agricultural planning) and private (decision support to farmers, insurance companies) sectors may benefit from such an improvement of crop forecasting.
Resumo:
Carpathian region is well known as tectonically active zone. So, in addition to common problems of such region, as common water floods, possible mudflows and landslides a local seismic activity must be taken in account. In this paper a main points of situation monitoring in Carpathian region and ways how they help in emergency prevention are described. A short overview of existing solutions and future approach is being made.
Resumo:
This study on risk and disaster management capacities of four Caribbean countries: Barbados, the Dominican Republic, Jamaica, and Trinidad and Tobago, examines three main dimensions: 1) the impact of natural disasters from 1900 to 2010 (number of events, number of people killed, total number affected, and damage in US$); 2) institutional assessments of disaster risk management disparity; and 3) the 2010 Inter-American Bank for Development (IADB) Disaster Risk and Risk Management indicators for the countries under study. The results show high consistency among the different sources examined, pointing out the need to extend the IADB measurements to the rest of the Caribbean countries. Indexes and indicators constitute a comparison measure vis-à-vis existing benchmarks in order to anticipate a capacity to deal with adverse events and their consequences; however, the indexes and indicators could only be tested against the occurrence of a real event. Therefore, the need exists to establish a sustainable and comprehensive evaluation system after important disasters to assess a country‘s performance, verify the indicators, and gain feedback on measurement systems and methodologies. There is diversity in emergency and preparedness for disasters in the four countries under study. The nature of the event (hurricanes, earthquakes, floods, and seismic activity), especially its frequency and the intensity of the damage experienced, is related to how each has designed its risk and disaster management policies and programs to face natural disasters. Vulnerabilities to disaster risks have been increasing, among other factors, because of uncontrolled urbanization, demographic density and poverty increase, social and economic marginalization, and lack of building code enforcement. The four countries under study have shown improvements in risk management capabilities, yet they are far from being completed prepared. Barbados‘ risk management performance is superior, in comparison, to the majority of the countries of the region. However, is still far in achieving high performance levels and sustainability in risk management, primarily when it has the highest gap between potential macroeconomic and financial losses and the ability to face them. The Dominican Republic has shown steady risk performance up to 2008, but two remaining areas for improvement are hazard monitoring and early warning systems. Jamaica has made uneven advances between 1990 and 2008, requiring significant improvements to achieve high performance levels and sustainability in risk management, as well as macroeconomic mitigation infrastructure. Trinidad and Tobago has the lowest risk management score of the 15 countries in the Latin American and Caribbean region as assessed by the IADB study in 2010, yet it has experienced an important vulnerability reduction. In sum, the results confirmed the high disaster risk management disparity in the Caribbean region.
Resumo:
This study on risk and disaster management capacities of four Caribbean countries: Barbados, the Dominican Republic, Jamaica, and Trinidad and Tobago, examines three main dimensions: 1) the impact of natural disasters from 1900 to 2010 (number of events, number of people killed, total number affected, and damage in US$); 2) institutional assessments of disaster risk management disparity; and 3) the 2010 Inter-American Bank for Development (IADB) Disaster Risk and Risk Management indicators for the countries under study. The results show high consistency among the different sources examined, pointing out the need to extend the IADB measurements to the rest of the Caribbean countries. Indexes and indicators constitute a comparison measure vis-à-vis existing benchmarks in order to anticipate a capacity to deal with adverse events and their consequences; however, the indexes and indicators could only be tested against the occurrence of a real event. Therefore, the need exists to establish a sustainable and comprehensive evaluation system after important disasters to assess a country’s performance, verify the indicators, and gain feedback on measurement systems and methodologies. There is diversity in emergency and preparedness for disasters in the four countries under study. The nature of the event (hurricanes, earthquakes, floods, and seismic activity), especially its frequency and the intensity of the damage experienced, is related to how each has designed its risk and disaster management policies and programs to face natural disasters. Vulnerabilities to disaster risks have been increasing, among other factors, because of uncontrolled urbanization, demographic density and poverty increase, social and economic marginalization, and lack of building code enforcement. The four countries under study have shown improvements in risk management capabilities, yet they are far from being completed prepared. Barbados’ risk management performance is superior, in comparison, to the majority of the countries of the region. However, is still far in achieving high performance levels and sustainability in risk management, primarily when it has the highest gap between potential macroeconomic and financial losses and the ability to face them. The Dominican Republic has shown steady risk performance up to 2008, but two remaining areas for improvement are hazard monitoring and early warning systems. Jamaica has made uneven advances between 1990 and 2008, requiring significant improvements to achieve high performance levels and sustainability in risk management, as well as macroeconomic mitigation infrastructure. Trinidad and Tobago has the lowest risk management score of the 15 countries in the Latin American and Caribbean region as assessed by the IADB study in 2010, yet it has experienced an important vulnerability reduction. In sum, the results confirmed the high disaster risk management disparity in the Caribbean region.
Resumo:
In this paper we propose a new framework for evaluating designs based on work domain analysis, the first phase of cognitive work analysis. We develop a rationale for a new approach to evaluation by describing the unique characteristics of complex systems and by showing that systems engineering techniques only partially accommodate these characteristics. We then present work domain analysis as a complementary framework for evaluation. We explain this technique by example by showing how the Australian Defence Force used work domain analysis to evaluate design proposals for a new system called Airborne Early Warning and Control. This case study also demonstrates that work domain analysis is a useful and feasible approach that complements standard techniques for evaluation and that promotes a central role for human factors professionals early in the system design and development process. Actual or potential applications of this research include the evaluation of designs for complex systems.
Resumo:
The objective of the work has been to study why systems thinking should be used in combination with TQM, what are the main benefits of the integration and how it could best be done. The work analyzes the development of systems thinking and TQM with time and the main differences between them. The work defines prerequisites for adopting a systems approach and the organizational factors which embody the development of an efficient learning organization. The work proposes a model based on combination of an interactive management model and redesign to be used for application of systems approach with TQM in practice. The results of the work indicate that there are clear differences between systems thinking and TQM which justify their combination. Systems approach provides an additional complementary perspective to quality management. TQM is focused on optimizing operations at the operational level while interactive management and redesign of organization are focused on optimization operations at the conceptual level providing a holistic system for value generation. The empirical study demonstrates the applicability of the proposed model in one case study company but its application is tenable and possible also beyond this particular company. System dynamic modeling and other systems based techniques like cognitive mapping are useful methods for increasing understanding and learning about the behavior of systems. The empirical study emphasizes the importance of using a proper early warning system.
Resumo:
Material flow simulation, Simulation-based Early Warning System, Discrete Event Simulation, Production Planning and Control, Automotive Industry, Forecast of Future System States, Monitoring Systems
Resumo:
OBJECTIVE: The origins of behavioral and psychological symptoms (BPS) in Alzheimer's disease (AD) are still poorly understood. Focusing on individual personality structure, we explored the relationship between premorbid personality and its changes over 5 years, and BPS in patients at an early stage of AD. METHOD: A total of 54 patients at an early stage of AD according to ICD-10 and NINCDS-ADRDA criteria and 64 control subjects were included. Family members filled in the Neuropsychiatric Inventory Questionnaire to evaluate their proxies' current BPS and the NEO Personality Inventory Revised twice, the first time to evaluate the participants' current personality and the second time to assess personality traits as they were remembered to be 5 years earlier. RESULTS: Behavioral and psychological symptoms, in particular apathy, depression, anxiety, and agitation, are frequent occurrences in early stage AD. Premorbid personality differed between AD patients and normal control, but it was not predictive of BPS in patients with AD. Personality traits clearly change in the course of beginning AD, and this change seems to develop in parallel with BPS as early signs of AD. CONCLUSIONS: Premorbid personality was not associated with BPS in early stage of AD, although complex and non-linear relationships between the two are not excluded. However, both personality and behavioral changes occur early in the course of AD, and recognizing them as possible, early warning signs of neurodegeneration may prove to be a key factor for early detection and intervention. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
Earthquakes represent a major hazard for populations around the world, causing frequent loss of life,human suffering and enormous damage to homes, other buildings and infrastructure. The Technology Resources forEarthquake Monitoring and Response (TREMOR) Team of 36 space professionals analysed this problem over thecourse of the International Space University Summer Session Program and published their recommendations in the formof a report. The TREMOR Team proposes a series of space- and ground-based systems to provide improved capabilityto manage earthquakes. The first proposed system is a prototype earthquake early-warning system that improves theexisting knowledge of earthquake precursors and addresses the potential of these phenomena. Thus, the system willat first enable the definitive assessment of whether reliable earthquake early warning is possible through precursormonitoring. Should the answer be affirmative, the system itself would then form the basis of an operational earlywarningsystem. To achieve these goals, the authors propose a multi-variable approach in which the system will combine,integrate and process precursor data from space- and ground-based seismic monitoring systems (already existing andnew proposed systems) and data from a variety of related sources (e.g. historical databases, space weather data, faultmaps). The second proposed system, the prototype earthquake simulation and response system, coordinates the maincomponents of the response phase to reduce the time delays of response operations, increase the level of precisionin the data collected, facilitate communication amongst teams, enhance rescue and aid capabilities and so forth. It isbased in part on an earthquake simulator that will provide pre-event (if early warning is proven feasible) and post-eventdamage assessment and detailed data of the affected areas to corresponding disaster management actors by means of ageographic information system (GIS) interface. This is coupled with proposed mobile satellite communication hubs toprovide links between response teams. Business- and policy-based implementation strategies for these proposals, suchas the establishment of a non-governmental organisation to develop and operate the systems, are included.
Resumo:
In 1903, more than 30 million m3 of rock fell from the east slopes of Turtle Mountain in Alberta, Canada, causing a rock avalanche that killed about 70 people in the town of Frank. The Alberta Government, in response to continuing instabilities at the crest of the mountain, established a sophisticated field laboratory where state-of-the-art monitoring techniques have been installed and tested as part of an early-warning system. In this chapter, we provide an overview of the causes, trigger, and extreme mobility of the landslide. We then present new data relevant to the characterization and detection of the present-day instabilities on Turtle Mountain. Fourteen potential instabilities have been identified through field mapping and remote sensing. Lastly, we provide a detailed review of the different in-situ and remote monitoring systems that have been installed on the mountain. The implications of the new data for the future stability of Turtle Mountain and related landslide runout, and for monitoring strategies and risk management, are discussed.
Resumo:
Most warning systems for plant disease control are based on Vinho, in Bento Gonçalves - RS, during the growing seasons 2000/ weather models dependent on the relationships between leaf wetness 01, 2002/03 and 2003/2004, using the grape cultivar Isabel. The duration and mean air temperature in this period considering the conventional system used by local growers was compared with the target disease intensity. For the development of a warning system to new warning system by using different cumulative daily disease severity control grapevine downy mildew, the equation generated by Lalancette values (CDDSV) as the criterion to schedule fungicide application and et al. (7) was used. This equation was employed to elaborate a critical reapplication. In experiments conducted in 2003/04, CDDSV of 12 - period table and program a computerized device, which records, though 14 showed promising to schedule the first spraying and the interval electronic sensors, leaf wetness duration, mean temperature in this between fungicide applications, reducing by 37.5% the number of period and automatically calculates the daily value of probability of applications and maintaining the same control efficiency in leaves infection occurrence. The system was validated at Embrapa Uva e and bunches, similarly to the conventional system.