911 resultados para ETHYL CARBAMATE
Resumo:
A new case of the uncommon cis-trans enantiomerism is presented. The titled anhydride adducts were prepared in good yields by the known reaction of three 6-arylfulvenes with maleic anhydride (aryl = phenyl, p-tolyl and p-anisyl). The exo adducts were converted to the corresponding imides by reaction with (1S)-1-(naphth-1-yl)ethylamine in similar to 80% yields, and the resulting diastereomeric imides separated by silica gel column chromatography. They were hydrolysed and recyclised to the chiral anhydrides, in `one-pot' with 10% NaOH-EtOH, followed by treatment with 2 M HCl, in similar to 40% yields. The titled anhydrides were thus obtained in homochiral form, in enantiomeric purities (generally) of similar to 90% as indicated by chiral HPLC. The chiral anhydrides were also converted to the corresponding imides (presumably stereospecifically), by treatment with ammonia solution in excellent yields. The crystal structure of one of the above diastereomeric imides (derived from 6-phenylfulvene) was determined, and based on the known (S)-configuration of the naphthylethylamine moiety, the `configurations' of the original anhydride adducts were assigned. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Vapor-liquid equilibrium data have been measured for the binary systems methyl ethyl ketone-p-xylene and chlorobenzene-p-xylene, at 685 mmHg pressure. The activity coefficients have been evaluated taking Into consideration the vapor-phase nonideallty. The f-x-y data have been subjected to a thermodynamic consistency test and the activity coefficients have been correlated by the Wilson equation.
Resumo:
The supramolecular structures of eight aryl protected ethyl-6-methyl-4-phenyl-2-oxo-1,2,3,4-tetrahydropyrimidine- 5-carboxylates have been analyzed to determine the role of different functional groups on the molecular geometry, conformational characteristics and the packing of these molecules in the crystal lattice. Out of these the para fluoro substituted compound on the aryl ring exhibits conformational polymorphism, due to the different conformation of the ester moiety. This behaviour has been characterized using both powder and single-crystal X-ray diffraction, optical microscopy and differential scanning calorimetry performed on both these polymorphs. The compounds pack via the cooperative interplay of strong N-H center dot center dot center dot O=C intermolecular dimers and chains forming a sheet like structure. In addition, weak C-H center dot center dot center dot O=C and C-H center dot center dot center dot pi interactions impart additional stability to the crystal packing.
Resumo:
C18H17NO3, M r = 295"34, monoclinic, C2/c, a = 11.689 (2), b = 22.934 (4), c = 11.592 (2) A, fl=100.16(3) ° , V =3058.8(8) A 3, Z=8, D,n= 1.30 (5), Dx = 1.28 Mg m -3, A(Mo Ka) = 0.7107 A, tz(Mo Ka) = 0.094 mm- 1, F(000) = 1248, T = 300 K, final R = 0.046 for 1849 observed reflections [I > 30"(/)]. The indole nucleus is slightly bent along the C(8)---C(9) bond. The phenyl ring connected to the indole moiety is rotated about the C(3)---C(10) bond by 45.8 (3) °. The carboxyl group makes a dihedral angle of 8.1 (4) ° with the mean plane of the indole moiety. Centrosymmetrically related pairs of molecules are linked through hydrogen bonds across the centre of symmetry and form dimers.
Resumo:
Full Paper: The copolyperoxides of various compositions of indene with methyl acrylate, ethyl acrylate and butyl acrylate have been synthesized by the free-radical-initiated oxidative copolymerization. The compositions of copolyperoxide obtained from H-1 and C-13 NMR spectra have been used to determine the reactivity ratios of the monomers. The copolyperoxides contain a greater proportion of the indene units in random placement. The NMR studies have shown irregularities in the copolyperoxide chain due to the cleavage reactions of the propagating peroxide radical. The thermal analysis by differential scanning calorimetry suggests alternating peroxide units in the copolyperoxide chain. From the activation energy for the thermal degradation, it was inferred that degradation occurs via the dissociation of the peroxide (O-O) bonds of the copolyperoxide chain. The flexibility of the polyperoxides in terms of glass transition temperature (T-g) has also been examined.
Resumo:
The title compound, C(6)H(10)N(2)O, is a zwitterionic pyrazole derivative. The crystal packing is predominantly governed by a three-center iminium-amine N(+)-H center dot center dot center dot O(-)center dot center dot center dot H-N interaction, leading to an undulating sheet-like structure lying parallel to (100).
Resumo:
The title compound, C(15)H(15)F(3)N(2)O(2)S, adopts a conformation with an intramolecular C-H center dot center dot center dot pi interaction. The dihedral angles between the planes of the 4-(trifluoromethyl) phenyl and ester groups with the plane of the six-membered tetrahydropyrimidine ring are 81.8 (1) and 16.0 (1)degrees, respectively. In the crystal structure, intermolecular N-H center dot center dot center dot S hydrogen bonds link pairs of molecules into dimers and N-H center dot center dot center dot O interactions generate hydrogen-bonded molecular chains along the crystallographic a axis.
Resumo:
Poly{(N,N-(dimethylamino)ethyl methacrylate]-co-(methyl methacrylate)} copolymers of various compositions were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization at 70 degrees C in N,N-dimethylformamide. The polymer molecular weights and molecular weight distributions were obtained from size exclusion chromatography, and they indicated the controlled nature of the RAFT polymerizations; the polydispersity indices are in the range 1.11.3. The reactivity ratios of N,N-(dimethylamino)ethyl methacrylate (DMAEMA) and methyl methacrylate (MMA) (rDMAEMA = 0.925 and rMMA = 0.854) were computed by the extended KelenTudos method at high conversions, using compositions obtained from 1H NMR. The pH- and temperature-sensitive behaviour were studied in aqueous solution to confirm dual responsiveness of these copolymers. The thermal properties of the copolymers with various compositions were investigated by differential scanning calorimetry and thermogravimetric analysis. The kinetics of thermal degradation were determined by Friedmann and Chang techniques to evaluate various parameters such as the activation energy, the order and the frequency factor. (c) 2012 Society of Chemical Industry
Resumo:
Objectives Based on previous screening results, the cytotoxic effect of the hexane (JDH) and ethyl acetate extracts (JDE) of the marine sponge Jaspis diastra were evaluated on HeLa cells and the present study aimed at determining their possible mechanism of cell death. Methods Nuclear staining, membrane potential change, flow cytometry analysis of cell cycle distribution and annexin V staining were undertaken to investigate the effects of JDE and JDH. Electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance were used to characterize an isolated bioactive molecule. Key findings JDE displayed an IC50 25 times more significant than the JDH. Flow cytometry analysis revealed JDE induced apoptosis in HeLa cells accompanied by the collapse of mitochondrial membrane potential. Fractionation of JDE resulted in the isolation of the known cytotoxic cyclodepsipeptide, Jaspamide. Conclusions Taking our results together suggest that JDE can be valuable for the development of anticancer drugs, especially for cervical cancer. Further investigations are currently in progress with the aim to determine and isolate other bioactive compounds from this extract.
Resumo:
A pair of first and second generation poly(alkyl ether imine) dendrimers is prepared, having covalently attached cholesteryl moieties at their peripheries. The pairs in each generation differ in the alkyl-linker which constitute the dendritic core moieties, even when the number of cholesteryl moieties remains uniform in each pair. The dendrimer pairs are two first and second generation poly(ethyl ether imine) and poly(propyl ether imine) dendrimers, modified with 4 and 8 cholesteryl esters at the peripheries in each pair, respectively. The dendrimer pairs exhibit differing thermotropic mesophase properties. Microscopic, thermal and X-ray diffraction studies reveal a lamellar mesophase for the first generation ethyl-, first and second generation propyl-linker dendrimers. Whereas, the second generation ethyl-linker dendrimer exhibits a layered structure with a superimposed in-plane modulation, the length of which corresponds to a rectangular column width. The role of the dendrimer core moieties with differing linkers in modifying the mesophase properties is studied. (C) 2016 Elsevier Ltd. All rights reserved.
Resumo:
Carfentrazone-ethyl (CE) is a reduced risk herbicide that is currently being evaluated for the control of aquatic weeds. Greenhouse trials were conducted to determine efficacy of CE on water hyacinth ( Eichhornia crassipes (Mart.) Solms- Laub.), water lettuce ( Pistia stratiotes L.), salvinia ( Salvinia minima Baker) and landoltia (Landoltia punctata (G. Mey.) Les & D. J. Crawford ) . CE controlled water lettuce, water hyacinth and salvinia at rates less than the maximum proposed use rate of 224 g ha -1 . Water lettuce was the most susceptible to CE with an EC 90 of 26.9 and 33.0 g ha -1 in two separate trials. Water hyacinth EC 90 values were calculated to be 86.2 to 116.3 g ha -1 , and salvinia had a similar susceptibility to water hyacinth with an EC 90 of 79.1 g ha -1 . Landoltia was not adequately controlled at the rates evaluated. In addition, CE was applied to one-half of a 0.08 ha pond located in North Central, Florida to determine dissipation rates in water and hydrosoil when applied at an equivalent rate of 224 g ha -1 . The half-life of CE plus the primary metabolite, CE-chloropropionic acid, was calculated to be 83.0 h from the whole pond, and no residues were detected in water above the limit of quantification (5 μg L -1 ) 168 h after treatment. CE dissipated rapidly from the water column, did not occur in the sediment above the levels of quantification, and in greenhouse studies effectively controlled three species of aquatic weeds at relatively low rates.(PDF contains 6 pages.)
Resumo:
The title compound, C19H18N2O3S, shows favourable activity against HIV-1. The phenyl ring is twisted with respect to the pyrimidine ring by 61.56 (9)degrees. Intermolecular N-H center dot center dot center dot O and C-H center dot center dot center dot O