537 resultados para ENHANCER
Resumo:
Intrathymic T-cell development requires temporally regulated rearrangement and expression of T-cell receptor (TCR) genes. To assess the role of the TCR beta gene transcriptional enhancer (Ebeta) in this process, mouse strains in which Ebeta is deleted were generated using homologous recombination techniques. We report that mice homozygous for the Ebeta deletion, whether a selectable marker gene is present or not, show a block in alphabeta T-cell development at the CD4-CD8- double-negative cell stage, whereas the number of gammadelta+ T cells is normal, few CD4+CD8+ double-positive thymocytes and no alphabeta+ T cells are produced. DNA-PCR and RNA-PCR analyses of thymic cells from homozygous mutants showed no evidence of TCR beta gene rearrangement although germ-line Vbeta transcripts were detected at a low level, in heterozygous T cells, the targeted allele is not rearranged. Thus, deletion of Ebeta totally prevents rearrangement, but not transcription, of the targeted beta locus. These data formally establish the critical role played by Ebeta in cis-activation of the TCR beta locus for V(D)J recombination during alphabeta T-cell development.
Resumo:
Analyses of the human PAX-5 locus and of the 5' region of the mouse Pax-5 gene revealed that transcription from two distinct promoters results in splicing of two alternative 5' exons to the common coding sequences of exons 2-10. Transcription from the upstream promoter initiates downstream of a TATA box and occurs predominantly in B-lymphocytes, whereas the TATA-less downstream promoter is active in all Pax-5-expressing tissues. The human PAX-5 gene is located on chromosome 9 in region p13, which is involved in t(9;14)(pl3;q32) translocations recurring in small lymphocytic lymphomas of the plasmacytoid subtype and in derived large-cell lymphomas. A previous molecular analysis of a t(9;14) breakpoint from a diffuse large-cell lymphoma (KIS-1) demonstrated that the immunoglobulin heavy-chain (IgH) locus on 14q32 was juxtaposed to chromosome 9p13 sequences of unknown function [Ohno, H., Furukawa, T., Fukuhara, S., Zong, S. Q., Kamesaki, H., Shows, T. B., Le Beau, M. M., McKeithan, T. W., Kawakami, T. & Honjo, T. (1990) Proc. Natl. Acad. Sci. USA 87,628-632]. Here we show that the KIS-1 translocation breakpoint is located 1807 base pairs upstream of exon 1A of PAX-5, thus bringing the potent Emu enhancer of the IgH gene into close proximity of the PAX-5 promoters. These data suggest that deregulation of PAX-5 gene transcription by the t(9;14)(pl3;q32) translocation contributes to the pathogenesis of small lymphocytic lymphomas with plasmacytoid differentiation.
Resumo:
MEF2 (myocyte-specific enhancer factor 2) is a MADS box transcription factor that is thought to be a key regulator of myogenesis in vertebrates. Mutations in the Drosophila homologue of the mef2 gene indicate that it plays a key role in regulating myogenesis in Drosophila. We show here that the Drosophila tropomyosin I (TmI) gene is a target gene for mef2 regulation. The TmI gene contains a proximal and a distal muscle enhancer within the first intron of the gene. We show that both enhancers contain a MEF2 binding site and that a mutation in the MEF2 binding site of either enhancer significantly reduces reporter gene expression in embryonic, larval, and adult somatic body wall muscles of transgenic flies. We also show that a high level of proximal enhancer-directed reporter gene expression in somatic muscles requires the cooperative activity of MEF2 and a cis-acting muscle activator region located within the enhancer. Thus, mef2 null mutant embryos show a significant reduction but not an elimination of TmI expression in the body wall myoblasts and muscle fibers that are present. Surprisingly, there is little effect in these mutants on TmI expression in developing visceral muscles and dorsal vessel (heart), despite the fact that MEF2 is expressed in these muscles in wild-type embryos, indicating that TmI expression is regulated differently in these muscles. Taken together, our results show that mef2 is a positive regulator of tropomyosin gene transcription that is necessary but not sufficient for high level expression in somatic muscle of the embryo, larva, and adult.
Resumo:
The transcription factor, B-cell-specific activator protein (BSAP), represses the murine immunoglobulin heavy-chain 3' enhancer 3' alpha E(hs1,2) in B cells. Analysis of various 3'alpha E deletional constructs indicates that sequences flanking a and b BSAP-binding sites are essential for appropriate regulation of the enhancer. An octamer motif 5' of the a site and a specific G-rich motif 3' of the b site were identified by competition in electrophoretic mobility-shift assays and methylation-interference foot-printing analysis. Site-directed mutagenesis of either the octamer or G-rich sites resulted in the complete release of repression of 3' alpha E(hs1,2), implicating these two motifs in the repression of this enhancer in B cells. However, when both BSAP-binding sites were mutated, the octamer and G-rich motifs functioned as activators. Moreover, in plasma cells, when BSAP is not expressed, 3' alpha E(hs1,2) is active, and its activity depends on the presence of the other two factors. These results suggest that in B cells, 3' alpha E (hs1,2) is down-regulated by the concerted actions of BSAP, octamer, and G-rich DNA-binding proteins. Supporting this notion of concerted repression, a physical interaction between BSAP and octamer-binding proteins was demonstrated using glutathione S-transferase fusion proteins. Thus, concerted repression of 3' alpha E (hs1,2) in B cells provides a sensitive mechanism by which this enhancer, either individually or as part of a locus-controlling region, is highly responsive to any of several participating factors.
Resumo:
A tetramer of the Mu transposase (MuA) pairs the recombination sites, cleaves the donor DNA, and joins these ends to a target DNA by strand transfer. Juxtaposition of the recombination sites is accomplished by the assembly of a stable synaptic complex of MuA protein and Mu DNA. This initial critical step is facilitated by the transient binding of the N-terminal domain of MuA to an enhancer DNA element within the Mu genome (called the internal activation sequence, IAS). Recently we solved the three-dimensional solution structure of the enhancer-binding domain of Mu phage transposase (residues 1-76, MuA76) and proposed a model for its interaction with the IAS element. Site-directed mutagenesis coupled with an in vitro transposition assay has been used to assess the validity of the model. We have identified five residues on the surface of MuA that are crucial for stable synaptic complex formation but dispensable for subsequent events in transposition. These mutations are located in the loop (wing) structure and recognition helix of the MuA76 domain of the transposase and do not seriously perturb the structure of the domain. Furthermore, in order to understand the dynamic behavior of the MuA76 domain prior to stable synaptic complex formation, we have measured heteronuclear 15N relaxation rates for the unbound MuA76 domain. In the DNA free state the backbone atoms of the helix-turn-helix motif are generally immobilized whereas the residues in the wing are highly flexible on the pico- to nanosecond time scale. Together these studies define the surface of MuA required for enhancement of transposition in vitro and suggest that a flexible loop in the MuA protein required for DNA recognition may become structurally ordered only upon DNA binding.
Resumo:
Like other adipocyte genes that are transcriptionally activated by CCAAT/enhancer binding protein alpha (C/EBP alpha) during preadipocyte differentiation, expression of the mouse obese (ob) gene is immediately preceded by the expression of C/EBP alpha. While the 5' flanking region of the mouse ob gene contains several consensus C/EBP binding sites, only one of these sites appears to be functional. DNase I cleavage inhibition patterns (footprinting) of the ob gene promoter revealed that recombinant C/EBP alpha, as well as a nuclear factor present in fully differentiated 3T3-L1 adipocytes, but present at a much lower level in preadipocytes, protects the same region between nucleotides -58 and -42 relative to the transcriptional start site. Electrophoretic mobility-shift analysis using nuclear extracts from adipose tissue or 3T3-L1 adipocytes and an oligonucleotide probe corresponding to a consensus C/EBP binding site at nucleotides -55 to -47 generated a specific protein-oligonucleotide complex that was supershifted by antibody against C/EBP alpha. Probes corresponding to two upstream consensus C/EBP binding sites failed to generate protein-oligonucleotide complexes. Cotransfection of a C/EBP alpha expression vector into 3T3-L1 cells with a series of 5' truncated ob gene promoter constructs activated reporter gene expression with all constructs containing the proximal C/EBP binding site (nucleotides -55 to -47). Mutation of this site blocked transactivation by C/EBP alpha. Taken together, these findings implicate C/EBP alpha as a transcriptional activator of the ob gene promoter and identify the functional C/EBP binding site in the promoter.
Resumo:
The mechanisms regulating expression of mouse mammary tumor virus (MMTV)-encoded superantigens from the viral sag gene are largely unknown, due to problems with detection and quantification of these low-abundance proteins. To study the expression and regulation of the MMTV sag gene, we have developed a sensitive and quantitative reporter gene assay based on a recombinant superantigen-human placental alkaline phosphatase fusion protein. High sag-reporter expression in Ba/F3, an early B-lymphoid cell line, depends on enhancers in either of the viral long terminal repeats (LTRs) and is largely independent of promoters in the 5' LTR. The same enhancer region is also required for general expression of MMTV genes from the 5' LTR. The enhancer was mapped to a 548-bp fragment of the MMTV LTR lying within sag and shown to be sufficient to stimulate expression from a heterologous simian virus 40 promoter. No enhancer activity of the MMTV LTR was observed in XC sarcoma cells, which are permissive for MMTV. Our results demonstrate a major role for this enhancer in MMTV gene expression in early B-lymphoid cells.
Resumo:
The mechanism under which the signal-reception amino-terminal portion (A domain) of the prokaryotic enhancer-binding protein XylR controls the activity of the regulator has been investigated through complementation tests in vivo, in which the various protein segments were produced as independent polypeptides. Separate expression of the A domain repressed the otherwise constitutive activity of a truncated derivative of XylR deleted of its A domain (XylR delta A). Such inhibition was not released by m-xylene, the natural inducer of the system. Repression caused by the A domain was specific for XylR because it did not affect activation of the sigma 54 promoter PnifH by a derivative of its cognate regulator, NifA, deleted of its own A domain. The A domain was also unable to repress the activity of a NifA-XylR hybrid protein resulting from fusing two-thirds of the central domain of NifA to the carboxyl-terminal third of XylR, which includes its DNA-binding domain. The inhibitory effect caused by the A domain of XylR on XylR delta A seems, therefore, to result from specific interactions in trans between the two truncated proteins and not from mere hindering of an activating surface.
Resumo:
The glucocorticoid-responsive units (GRUs) of the rat tyrosine aminotransferase were associated with the regulatory sequences of a cellular gene expressed ubiquitously--that coding for the largest subunit of RNA polymerase II. In transient expression assays, glucocorticoid responsiveness of the hybrid regulatory regions depends on the spatial relationship and number of regulatory elements. Two parameters affect the ratio of induction by glucocorticoids: the basal level of the hybrid promoter that is affected by the RNA polymerase II regulatory sequences and the glucocorticoid-induced level that depends on the distance between the GRUs and the TATA box. A fully active glucocorticoid-responsive hybrid gene was used to generate transgenic mice. Results show that a composite regulatory pattern is obtained: ubiquitous basal expression characteristic of the RNA polymerase II gene and liver-specific glucocorticoid activation characteristic of the tyrosine aminotransferase GRUs. This result demonstrates that the activity of the tyrosine aminotransferase GRUs is cell-type-specific not only in cultured cells but also in the whole animal.
Resumo:
Electron microscopic visualization indicates that the transcription activator NRI (NTRC) binds with exceptional selectivity and efficiency to a sequence-induced superhelical (spiral) segment inserted upstream of the glnA promoter, accounting for its observed ability to substitute for the natural glnA enhancer. The cooperative binding of NRI to the spiral insert leads to protein oligomerization which, at higher concentration, promotes selective coating of the entire superhelical segment with protein. Localization of NRI at apical loops is observed with negatively supercoiled plasmid DNA. With a linear plasmid, bending of DNA is observed. We confirm that NRI is a DNA-bending protein, consistent with its high affinity for spiral DNA. These results prove that spiral DNA without any homology to the NRI-binding sequence site can substitute for the glnA enhancer by promoting cooperative activator binding to DNA and facilitating protein oligomerization. Similar mechanisms might apply to other prokaryotic and eukaryotic activator proteins that share the ability to bend DNA and act efficiently as multimers.
Resumo:
Splice-site selection and alternative splicing of nuclear pre-mRNAs can be controlled by splicing enhancers that act by promoting the activity of upstream splice sites. Here we show that RNA molecules containing a 3' splice site and enhancer sequence are efficiently spliced in trans to RNA molecules containing normally cis-spliced 5' splice sites or to normally trans-spliced spliced leader RNAs from lower eukaryotes. In addition, we show that this reaction is stimulated by (Ser + Arg)-rich splicing factors that are known to promote protein-protein interactions in the cis-splicing reaction. Thus, splicing enhancers facilitate the assembly of protein complexes on RNAs containing a 3' splice site, and this complex is sufficiently stable to functionally interact with 5' splice sites located on separate RNAs. This trans-splicing is mediated by interactions between (Ser + Arg)-rich splicing factors bound to the enhancer and general splicing factors bound to the 5' and 3' splice sites. These same interactions are likely to play a crucial role in alternative splicing and splice-site selection in cis.
Resumo:
The developmental stage- and erythroid lineage-specific activation of the human embryonic zeta- and fetal/adult alpha-globin genes is controlled by an upstream regulatory element [hypersensitive site (HS)-40] with locus control region properties, a process mediated by multiple nuclear factor-DNA complexes. In vitro DNase I protection experiments of the two G+C-rich, adult alpha-globin promoters have revealed a number of binding sites for nuclear factors that are common to HeLa and K-562 extracts. However, genomic footprinting analysis has demonstrated that only a subset of these sites, clustered between -130 and +1, is occupied in an erythroid tissue-specific manner. The function of these in vivo-occupied motifs of the alpha-globin promoters, as well as those previously mapped in the HS-40 region, is assayed by site-directed mutagenesis and transient expression in embryonic/fetal erythroid K-562 cells. These studies, together with our expression data on the human embryonic zeta-globin promoter, provide a comprehensive view of the functional roles of individual nuclear factor-DNA complexes in the final stages of transcriptional activation of the human alpha-like globin promoters by the HS-40 element.
Resumo:
The Pax5 transcription factor BSAP (B-cell-specific activator protein) is known to bind to and repress the activity of the immunoglobulin heavy chain 3' alpha enhancer. We have detected an element--designated alpha P--that lies approximately 50 bp downstream of the BSAP binding site 1 and is required for maximal enhancer activity. In vitro binding experiments suggest that the 40-kDa protein that binds to this element (NF-alpha P) is a member of the Ets family present in both B-cell and plasma-cell nuclei. However, in vivo footprint analysis suggests that the alpha P site is occupied only in plasma cells, whereas the BSAP site is occupied in B cells but not in plasma cells. When Pax5 binding to the enhancer in B cells was blocked in vivo by transfection with a triple-helix-forming oligonucleotide an alpha P footprint appeared and endogenous immunoglobulin heavy chain transcripts increased. The triple-helix-forming oligonucleotide also increased enhancer activity of a transfected construct in B cells, but only when the alpha P site was intact. Pax5 thus regulates the 3' alpha enhancer and immunoglobulin gene transcription by blocking activation by NF-alpha P.
Resumo:
The suppressor of Hairy-wing [su(Hw)] protein exerts a polar effect on gene expression by repressing the function of transcriptional enhancers located distally from the promoter with respect to the location of su(Hw) binding sequences. The directionality of this effect suggests that the su(Hw) protein specifically interferes with the basic mechanism of enhancer action. Moreover, mutations in modifier of mdg4 [mod(mdg4)] result in the repression of expression of a gene when the su(Hw) protein is bound to sequences in the copy of this gene located in the homologous chromosome. This effect is dependent on the presence of the su(Hw) binding region from the gypsy retrotransposon in at least one of the chromosomes and is enhanced by the presence of additional gypsy sequences in the other homology. This phenomenon is inhibited by chromosomal rearrangements that disrupt pairing, suggesting that close apposition between the two copies of the affected gene is important for trans repression of transcription. These results indicate that, in the absence of mod-(mdg4) product, the su(Hw) protein present in one chromosome can act in trans and inactivate enhancers located in the other homolog.