976 resultados para ENDOTHELIN-1-INDUCED CONTRACTION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The basis for the neuroprotectant effect of D-mannitol in reducing the sensory neurological disturbances seen in ciguatera poisoning, is unclear. Pacific ciguatoxin-1 (P-CTX-1), at a concentration 10 nM, caused a statistically significant swelling of rat sensory dorsal root ganglia (DRG) neurons that was reversed by hyperosmolar 50 MM D-mannitol. However, using electron paramagnetic resonance (EPR) spectroscopy, it was found that P-CTX-1 failed to generate hydroxyl free radicals at concentrations of toxin that caused profound effects on neuronal excitability. Whole-cell patch-clamp recordings from DRG neurons revealed that both hyper- and iso-osmolar 50 MM D-mannitol prevented the membrane depolarisation and repetitive firing of action potentials induced by P-CTX-1. In addition, both hyper- and iso-osmolar 50 MM D-mannitol prevented the hyperpolarising shift in steady-state inactivation and the rise in leakage current through tetrodotoxin (TTX)-sensitive Na-v channels, as well as the increased rate of recovery from inactivation of TTX-resistant Nav channels induced by P-CTX-1. D-Mannitol also reduced, but did not prevent, the inhibition of peak TTX-sensitive and TTX-resistant I-Na amplitude by P-CTX-1. Additional experiments using hyper- and isoosmolar D-sorbitol, hyperosmolar sucrose and the free radical scavenging agents Trolox (R) and L-ascorbic acid showed that these agents, unlike D-mannitol, failed to prevent the effects of P-CTX-1 on spike electrogenesis and Na-v channel gating. These selective actions of D-mannitol indicate that it does not act purely as an osmotic agent to reduce swelling of nerves, but involves a more complex action dependent on the Nav channel subtype, possibly to alter or reduce toxin association. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1 The calcineurin (CaN) enzyme-transcriptional pathway is critically involved in hypertrophy of heart muscle in some animal models. Currently there is no information concerning the regulation of CaN activation by endogenous agonists in human heart. 2 Human right ventricular trabeculae from explanted human ( 14 male/2 female) failing hearts were set up in a tissue bath and electrically paced at 1Hz and incubated with or without 100 nM endothelin-1 (ET-1), 10 mu M, angiotensin-II (Ang II) or 20 nM human urotensin-II (hUII) for 30 min. Tissues from four patients were incubated with 200 nM tacrolimus (FK506) for 30 min and then incubated in the presence or absence of ET-1 for a further 30 min. 3 ET-1 increased contractile force in all 13 patients (P < 0.001). Ang II and hUII increased contractile force in three out of eight and four out of 10 patients but overall nonsignificantly (P > 0.1). FK506 had no effect on contractile force (P = 0.12). 4 ET-1, Ang II and hUII increased calcineurin activity by 32, 71 and 15%, respectively, while FK506 reduced activity by 34%. ET-1 in the presence of FK506 did not restore calcineurin activity (P = 0.1). 5 There was no relationship between basal CaN activity and expression levels in the right ventricle. Increased levels of free phosphate were detected in ventricular homogenates that were incubated with PKC epsilon compared to samples incubated without PKCe. 6 Endogenous cardiostimulants which activate G alpha q-coupled receptors increase the activity of calcineurin in human heart following acute (30 min) exposure. PKC may contribute to this effect by increasing levels of phosphorylated calcineurin substrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Endothelin-1 is a potent vasoconstricting growth peptide. In physiologic conditions basal levels maintain vascular homeostasis, conversely in pathological situations it may be expressed in response to chronic and acute vascular injury. Elevated levels of plasma ET-1 have been identified in sub-populations at risk of ischaemic heart disease (IHD) including smokers, diabetics and hyerlipidaemic subjects and in patients with atherosclerotic disease. This peptide may be chronically expressed, such as in congestive heart failure where it has been used as a prognostic marker of disease severity and also acutely, after cardiac revascularisation surgery, possibly as a result of endothelial injury and ischaemia. Aims: The objectives of this study were to (1) identify basal endothelin-1 concentrations in a young healthy control group with no risk factors for IHD (control group 1); (2) to compare; (1) venous plasma ET-1 levels preoperatively and post-operatively in patients undergoing CABG surgery, (3) to compare pre-operative plasma ET-1 levels from the CABG group with an age and gender matched control group (control group 2) and (4) combine all three groups to assess correlations between plasma ET-1 and the various risk factors for IHD, including smoking, hypertension, hyperlipidemia, diabetes and family history. Methods: Venous specimens were collected in chilled EDTA tubes and samples measured using an ELISA assay (Biomedica), following the standard protocol for human EDTA plasma. Results: Forty CABG patients (5F, 35M, mean age 66 yrs), 15 control group 1 subjects (8F, 7M, mean age 29 yrs) and 30 control group 2 subjects (5F, 25M, mean age 61 yrs) participated in the study. No significant difference was detected in plasma ET-1 levels between the controls (1) and (2), and the CABG group, where plasma ET-1 levels were 3.37+/ 5.19 pmol/L, 1.99+/3.74 pmol/L and 1.28+/1.27 pmol/L, respectively. There was a non-significant elevation in post-op ET-1 plasma in comparison with the pre-op levels (2.50+/0.51 Vs 1.45+/6.44). There were also no statistical correlation between risk factors for IHD including smoking, hypertension, NIDDM, hyperlipidemia or family history when data from both patient and controls groups was merged. Conclusion: Contrary to other findings, plasma ET-1 does not appear to a valid marker for IHD or factors which are strongly associated with the pathogenesis of this disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: The vasoconstricting peptide Endothelin-1 (ET-1) has been associated with atherosclerotic cardiovascular disease, AAA, hypertension and hypercholesterolemia. It is known to stimulate quiescent vascular smooth muscle cells (VSMC) into the growth cycle and has been linked to intimal thickening following endothelial injury and is associated with vessel wall remodelling in salt-sensitive hypertension models. Enhanced ET-1 expression has been reported in the internal mammary artery (IMA) and was markedly higher in patients undergoing cardiac bypass surgery who were diabetic and /or hypercholesterolemic. Aims: To firstly review the histopathology of the IMA and secondly, determine the relationship between ET-1 expression in this vessel and mitogenic activity in the medial VSMC. Methods: Vessel tissue collected at the time of CABG surgery was formalin-fixed and paraffin-embedded for histological investigation. Cross sections of the left distal IMAwere stained with Alcian Blue/Verhoeff’s van Gieson to assess medial degeneration and identify the elastic lamellae and picrosirius red to determine the collagen content (specifically type I and type III). Immunohistochemistry staining was used to assess VSMC growth (PCNA label), tissue ET-1 expression, VSMC (SMCa-actin) area and macrophage/monocyte (anti-CD68) infiltration. Quantitative analysis was performed to measure the VSMC area in relation to ET-1 staining. Results: Fifty-five IMA specimens from the CABG patients (10F; 45M; mean age 65 years) were collected for this study. Fourteen donor IMAspecimens were used as controls (7F; 7M; mean age 45 years). Significant medial hypertrophy, VSMC disorganisation and elastic lamellae destruction was detected in the CABG IMA. The amount of Alcian blue staining in the CABG IMA was almost double that of the control (31.85+/14.52% Vs 17.10+/9.96%, P= .0006). Total collagen and type I collagen content was significantly increased compared with controls (65.8+/18.3% Vs 33.7 + / 13.7%, P= .07), (14.2 + /10.0% Vs 4.8 + /2.8%, P= .01), respectively. Tissue ET-1 and PCNA labelling were also significantly elevated the CABG IMA specimens relative to the controls (69.99 + /18.74%Vs 23.33 + /20.53%, P= .0001, and 37.29 + /12.88% Vs 11.06 + /8.18, P= .0001), respectively. There was mild presence of macrophages and monocytes in both CABG and control tissue. Conclusions: The IMA from CABG patients has elevated levels of type I collagen in the extracellular matrix indicative of fibrosis and was coupled with deleterious structural remodelling. Abnormally high levels of ET-1 were measured in the medial SMC layer and was associated with VSMC growth but not related to any chronic inflammatory response within the vessel wall.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hypoxia is a prominent feature of chronically inflamed tissues. Oxygen-sensing hydroxylases control transcriptional adaptation to hypoxia through the regulation of hypoxia-inducible factor (HIF) and nuclear factor ?B (NF-?B), both of which can regulate the inflammatory response. Furthermore, pharmacologic hydroxylase inhibitors reduce inflammation in multiple animal models. However, the underlying mechanism(s) linking hydroxylase activity to inflammatory signaling remains unclear. IL-1ß, a major proinflammatory cytokine that regulates NF-?B, is associated with multiple inflammatory pathologies. We demonstrate that a combination of prolyl hydroxylase 1 and factor inhibiting HIF hydroxylase isoforms regulates IL-1ß-induced NF-?B at the level of (or downstream of) the tumor necrosis factor receptor-associated factor 6 complex. Multiple proteins of the distal IL-1ß-signaling pathway are subject to hydroxylation and form complexes with either prolyl hydroxylase 1 or factor inhibiting HIF. Thus, we hypothesize that hydroxylases regulate IL-1ß signaling and subsequent inflammatory gene expression. Furthermore, hydroxylase inhibition represents a unique approach to the inhibition of IL-1ß-dependent inflammatory signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract : The chymase-dependant pathway responsible for converting Big ET-1 to ET-1 was established in vitro. It has only been recently, in 2009, that our group demonstrated that the conversion of Big ET-1 to ET-1 (1-31) can occur in vivo in mice (Simard et al., 2009), knowing that ET-1 (1-31) is converted to ET-1 via NEP in vivo (Fecteau et al., 2005). In addition, our laboratory demonstrated in 2013 that mMCP-4, the murine analogue of human chymase, produces ET-1 (1-31) from the Big ET-1 precursor (Houde et al. 2013). Thus far, in the literature, there are no specific characterizations of recombinant chymases (human or murine). In fact, the group of Murakami published in 1995 a study characterizing the CMA1 (human chymase) in a chymostatin-dependent fashion, using Angiotensin I as a substrate (Murakami et al., 1995). However, chymostatin is a non-specific inhibitor of chymase. It has been shown that chymostatin can inhibit elastase, an enzyme that can convert Angiotensin I to Angiotensin II (Becari et al., 2005). Based on these observations, the proposed hypothesis in the present study suggests that recombinant as well as extracted CMA1 from LUVA (human mast cell line), in addition to soluble fractions of human aortas, convert Big ET-1 into ET-1 (1-31 ) in a TY-51469 (a chymase-specific inhibitor) sensitive manner. In a second component, we studied the enzyme kinetics of CMA1 with regard to the Big ET-1 and Ang I substrate. The affinity of CMA1 against Big ET-1 was greater compared to Ang I (KM Big ET- 1: 12.55 μM and Ang I: 37.53 μM). However, CMA1 was more effective in cleaving Ang I compared to Big ET-1 (Kcat / KM Big ET-1: 6.57 x 10-5 μM-1.s-1 and Ang I: 1.8 x 10-4 ΜM-1.s- 1). In a third component involving in vivo experiments, the pressor effects of Big ET-1, ET-1 and Ang I were tested in conscious mMCP-4 KO mice compared to wild-type mice. The increase in mean arterial pressure after administration of Big ET-1 was greater in wild-type mice compared to mMCP- 4 KO mice. This effect was not observed after administration of ET-1 and / or Ang I.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Scherrer, Urs, Yves Allemann, Emrush Rexhaj, Stefano F. Rimoldi, and Claudio Sartori. Mechanisms and drug therapy of pulmonary hypertension at high altitude. High Alt Med Biol 14:126-133, 2013.-Pulmonary vasoconstriction represents a physiological adaptive mechanism to high altitude. If exaggerated, however, it is associated with important morbidity and mortality. Recent mechanistic studies using short-term acute high altitude exposure have provided insight into the importance of defective vascular endothelial and respiratory epithelial nitric oxide (NO) synthesis, increased endothelin-1 bioavailability, and overactivation of the sympathetic nervous system in causing exaggerated hypoxic pulmonary hypertension in humans. Based on these studies, drugs that increase NO bioavailability, attenuate endothelin-1 induced pulmonary vasoconstriction, or prevent exaggerated sympathetic activation have been shown to be useful for the treatment/prevention of exaggerated pulm9onary hypertension during acute short-term high altitude exposure. The mechanisms underpinning chronic pulmonary hypertension in high altitude dwellers are less well understood, but recent evidence suggests that they differ in some aspects from those involved in short-term adaptation to high altitude. These differences have consequences for the choice of the treatment for chronic pulmonary hypertension at high altitude. Finally, recent data indicate that fetal programming of pulmonary vascular dysfunction in offspring of preeclampsia and children generated by assisted reproductive technologies represents a novel and frequent cause of pulmonary hypertension at high altitude. In animal models of fetal programming of hypoxic pulmonary hypertension, epigenetic mechanisms play a role, and targeting of these mechanisms with drugs lowers pulmonary artery pressure. If epigenetic mechanisms also are operational in the fetal programming of pulmonary vascular dysfunction in humans, such drugs may become novel tools for the treatment of hypoxic pulmonary hypertension.