995 resultados para EMISSION CHARACTERISTICS
Resumo:
Cerium doped yttrium aluminate perovskite YAlO(3) (YAP) powders are pursued as interesting alternatives to bulk crystals for application in scintillating devices. The emissions of these materials in the near-UV and visible spectral regions originate from electric dipole transitions between 4f and 5d energy levels of Ce(3+) and largely depend on the environment occupied by the ion. In search for improved synthesis conditions that can lead to phase pure powders with optimized structural and spectroscopic characteristics, in this work we have employed the polymeric precursor (Pechini) method to prepare crystalline and amorphous YAP:Ce powders doped with 1-10 mol% Ce(3+). Interesting composite materials were also obtained by dispersing some of the YAP:Ce powders in silica xerogels. A comparative structural and spectroscopic study of all the samples was done by XRD, FT-IR, emission, excitation and excited state lifetime measurements. In agreement with previous reports, excitation at 296 nm results in intense emission in the range 315-425 nm with an average decay time of 30 ns. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
Gaseous and particulate emissions from a residential pellet boiler and a stove are measured at a realistic 6-day operation sequence and during steady state operation. The aim is to characterize the emissions during each phase in order to identify when the major part of the emissions occur to enable actions for emission reduction where the savings can be highest. The characterized emissions comprised carbon monoxide (CO), nitrogen oxide (NO), total organic carbon (TOC) and particulate matter (PM 2.5). In this study, emissions were characterised by mass concentration and emissions during start-up and stop phases were also presented in accumulated mass. The influence of start-up and stop phases on the emissions, average emission factors for the boiler and stove were analysed using the measured data from a six-days test. The share of start-up and stop emissions are significant for CO and TOC contributing 95% and 89% respectively at the 20kW boiler and 82% and 89% respectively at the 12 kW stove. NO and particles emissions are shown to dominate during stationary operation.
Resumo:
Er3+ doped SnO2 xerogels have been obtained from aqueous colloidal suspensions. Emission and excitation spectra were obtained and allowed the identification of two main families of sites for Er3+. In the first one Er3+ substitutes for Sn4+ in the SnO2 cassiterite structure. In the second Er3+ are found adsorbed at the SnO2 particle surface. For the first family of sites the technological important infrared Er3+ emission about 1.5 mum is efficiently excited through absorption at the SnO2 conduction band at 3.8 eV. on the other hand the emission due to adsorbed ions appears inhomogeneously broadened by the statistical distribution of sites available for Er3+ ions at the surface of the particles. Moreover it is not excited by the host. The emission of this second family of sites could be also excited by an energy transfer mechanism involving Yb3+ ions also adsorbed a posteriori at particles surface. Results are compared with spectra obtained for Eu3+ doped samples. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Gd2SiO5 is among the interesting and suitable hosts for Er3+ which find extensive applications in the infrared, visible and ultraviolet spectral regions. In order to investigate its potentialities, a prior study of the spectroscopic behaviour of Er3+ substituting for Gd3+ ions in the two crystallographic sites of the host was performed. Absorption, excitation, site-selective emission and time-resolved spectroscopies were employed in the visible spectral region to study transitions between excited 4S3/2 and ground 4I15/2 states. These levels multiplets were attributed to each site separately, and their corresponding 4S3/2 lifetimes (1.8 ± 0.1 μs for site 1 and 3.2 ± 0.1 μs for site 2) were determined.
Resumo:
Study of consumption rate and gaseous pollutant emission from engine tests simulating real work conditions, using spark point manually controlled and exhaust gas recirculation (EGR) in diverse proportion levels. The objective of this work is to re-examine the potential of the EGR conception, a well-known method of combustion control, employed together electronic fuel injection and three-way catalytic converter closed-loop control at a spark ignition engine, verifying the performance characteristics and technical availability of this conception to improve pollution control, fuel economy at low torque drive condition and to improve the engine exhaust components useful life. The pollutant emissions and consumption levels under operational conditions simulations were analysed and compared with the expected by concerning theory and real tests performed by EGR equipped engines by factory. Copyright © 2006 Society of Automotive Engineers, Inc.
Resumo:
CaSnO3 and SrSnO3 alkaline earth stannate thin films were prepared by chemical solution deposition using the polymeric precursor method on various single crystal substrates (R- and C-sapphire and 100-SrTiO3) at different temperatures. The films were characterized by X-ray diffraction (θ-2θ, ω- and φ-scans), field emission scanning electron microscopy, atomic force microscopy, micro-Raman spectroscopy and photoluminescence. Epitaxial SrSnO3 and CaSnO 3 thin films were obtained on SrTiO3 with a high crystalline quality. The long-range symmetry promoted a short-range disorder which led to photoluminescence in the epitaxial films. In contrast, the films deposited on sapphire exhibited a random polycrystalline growth with no meaningful emission regardless of the substrate orientation. The network modifier (Ca or Sr) and the substrate (sapphire or SrTiO3) influenced the crystallization process and/or the microstructure. Higher is the tilts of the SnO6 octahedra, as in CaSnO3, higher is the crystallization temperature, which changed also the nucleation/grain growth process. © 2012 Elsevier Inc. All rights reserved.
Resumo:
Crystalline terbium-doped indium hydroxide structures were prepared by a rapid and efficient Microwave-Assisted Hydrothermal (MAH) method. Nanostructures were obtained at a low temperature. FE-SEM images confirm that these samples are composed of 3D nanostructures. XRD, optical diffuse reflectance and photoluminescence (PL) measurements were used to characterize the products. Emission spectra of terbium-doped indium hydroxide (In(OH)3:xTb 3+) samples under excitation (350.7 nm) presented broad band emission referent to the indium hydroxide matrix and 5D4 → 7F6, 5D4 → 7F 5, 5D4 → 7F4, and 5D4 → 7F3 terbium transitions at 495, 550, 590 and 627 nm, respectively. Relative intensities of the Tb 3+ emissions increased as the concentration of this ion increased from 0, 1, 2, 4 and 8 mol%, of Tb3+, but the luminescence is drastically quenched for the In(OH)3 matrix. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Pós-graduação em Pesquisa e Desenvolvimento (Biotecnologia Médica) - FMB
Resumo:
In this work, we analyze modified bowtie nanoantennas with polynomial sides in the excitation and emission regimes. In the excitation regime, the antennas are illuminated by an incident plane wave, and in the emission regime, the excitation is fulfilled by infinitesimal electric dipole positioned in the gap of the nanoantennas. Several antennas with different sizes and polynomial order were numerically analyzed by method of moments. The results show that these novel antennas possess a controllable resonance by the polynomial order and good characteristics of near field enhancement and confinement for applications in enhancement of spontaneous emission of a single molecule.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The photon statistics of the random laser emission of a Rhodamine B doped di-ureasil hybrid powder is investigated to evaluate its degree of coherence above threshold. Although the random laser emission is a weighted average of spatially uncorrelated radiation emitted at different positions in the sample, a spatial coherence control was achieved due to an improved detection configuration based on spatial filtering. By using this experimental approach, which also allows for fine mode discrimination and timeresolved analysis of uncoupled modes from mode competition, an area not larger than the expected coherence size of the random laser is probed. Once the spectral and temporal behavior of nonoverlapping modes is characterized, an assessment of the photon-number probability distribution and the resulting second-order correlation coefficient as a function of time delay and wavelength was performed. The outcome of our single photon counting measurements revealed a high degree of temporal coherence at the time of maximum pump intensity and at wavelengths around the Rhodamine B gain maximum.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)