968 resultados para ELECTRON TRANSPORT PARAMETERS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One limitation to the widespread implementation of Monte Carlo (MC) patient dose-calculation algorithms for radiotherapy is the lack of a general and accurate source model of the accelerator radiation source. Our aim in this work is to investigate the sensitivity of the photon-beam subsource distributions in a MC source model (with target, primary collimator, and flattening filter photon subsources and an electron subsource) for 6- and 18-MV photon beams when the energy and radial distributions of initial electrons striking a linac target change. For this purpose, phase-space data (PSD) was calculated for various mean electron energies striking the target, various normally distributed electron energy spread, and various normally distributed electron radial intensity distributions. All PSD was analyzed in terms of energy, fluence, and energy fluence distributions, which were compared between the different parameter sets. The energy spread was found to have a negligible influence on the subsource distributions. The mean energy and radial intensity significantly changed the target subsource distribution shapes and intensities. For the primary collimator and flattening filter subsources, the distribution shapes of the fluence and energy fluence changed little for different mean electron energies striking the target, however, their relative intensity compared with the target subsource change, which can be accounted for by a scaling factor. This study indicates that adjustments to MC source models can likely be limited to adjusting the target subsource in conjunction with scaling the relative intensity and energy spectrum of the primary collimator, flattening filter, and electron subsources when the energy and radial distributions of the initial electron-beam change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The remarkable advances in nanoscience and nanotechnology over the last two decades allow one to manipulate individuals atoms, molecules and nanostructures, make it possible to build devices with only a few nanometers, and enhance the nano-bio fusion in tackling biological and medical problems. It complies with the ever-increasing need for device miniaturization, from magnetic storage devices, electronic building blocks for computers, to chemical and biological sensors. Despite the continuing efforts based on conventional methods, they are likely to reach the fundamental limit of miniaturization in the next decade, when feature lengths shrink below 100 nm. On the one hand, quantum mechanical efforts of the underlying material structure dominate device characteristics. On the other hand, one faces the technical difficulty in fabricating uniform devices. This has posed a great challenge for both the scientific and the technical communities. The proposal of using a single or a few organic molecules in electronic devices has not only opened an alternative way of miniaturization in electronics, but also brought up brand-new concepts and physical working mechanisms in electronic devices. This thesis work stands as one of the efforts in understanding and building of electronic functional units at the molecular and atomic levels. We have explored the possibility of having molecules working in a wide spectrum of electronic devices, ranging from molecular wires, spin valves/switches, diodes, transistors, and sensors. More specifically, we have observed significant magnetoresistive effect in a spin-valve structure where the non-magnetic spacer sandwiched between two magnetic conducting materials is replaced by a self-assembled monolayer of organic molecules or a single molecule (like a carbon fullerene). The diode behavior in donor(D)-bridge(B)-acceptor(A) type of single molecules is then discussed and a unimolecular transistor is designed. Lastly, we have proposed and primarily tested the idea of using functionalized electrodes for rapid nanopore DNA sequencing. In these studies, the fundamental roles of molecules and molecule-electrode interfaces on quantum electron transport have been investigated based on first-principles calculations of the electronic structure. Both the intrinsic properties of molecules themselves and the detailed interfacial features are found to play critical roles in electron transport at the molecular scale. The flexibility and tailorability of the properties of molecules have opened great opportunity in a purpose-driven design of electronic devices from the bottom up. The results that we gained from this work have helped in understanding the underlying physics, developing the fundamental mechanism and providing guidance for future experimental efforts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For half a century the integrated circuits (ICs) that make up the heart of electronic devices have been steadily improving by shrinking at an exponential rate. However, as the current crop of ICs get smaller and the insulating layers involved become thinner, electrons leak through due to quantum mechanical tunneling. This is one of several issues which will bring an end to this incredible streak of exponential improvement of this type of transistor device, after which future improvements will have to come from employing fundamentally different transistor architecture rather than fine tuning and miniaturizing the metal-oxide-semiconductor field effect transistors (MOSFETs) in use today. Several new transistor designs, some designed and built here at Michigan Tech, involve electrons tunneling their way through arrays of nanoparticles. We use a multi-scale approach to model these devices and study their behavior. For investigating the tunneling characteristics of the individual junctions, we use a first-principles approach to model conduction between sub-nanometer gold particles. To estimate the change in energy due to the movement of individual electrons, we use the finite element method to calculate electrostatic capacitances. The kinetic Monte Carlo method allows us to use our knowledge of these details to simulate the dynamics of an entire device— sometimes consisting of hundreds of individual particles—and watch as a device ‘turns on’ and starts conducting an electric current. Scanning tunneling microscopy (STM) and the closely related scanning tunneling spectroscopy (STS) are a family of powerful experimental techniques that allow for the probing and imaging of surfaces and molecules at atomic resolution. However, interpretation of the results often requires comparison with theoretical and computational models. We have developed a new method for calculating STM topographs and STS spectra. This method combines an established method for approximating the geometric variation of the electronic density of states, with a modern method for calculating spin-dependent tunneling currents, offering a unique balance between accuracy and accessibility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The charge transport properties of a catechol-type dithiol-terminated oligo-phenylene-ethynylene was investigated by cyclic voltammetry (CV) and by the scanning tunnelling microscopy break junction technique (STM-BJ). Single molecule charge transport experiments demonstrated the existence of high and low conductance regions. The junction conductance is rather weakly dependent on the redox state of the bridging molecule. However, a distinct dependence of junction formation probability and of relative stretching distances of the catechol- and quinone-type molecular junctions is observed. Substitution of the central catechol ring with alkoxy-moieties and the combination with a topological analysis of possible π-electron pathways through the respective molecular skeletons lead to a working hypothesis, which could rationalize the experimentally observed conductance characteristics of the redox-active nanojunctions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Particular interest has been directed towards the macrophage as a primary antineoplastic cell due to its tumoricidal properties in vitro and the observation that an inverse relationship exists between the number of macrophages infiltrating a tumor and metastatic potential. The mechanism of macrophage-mediated injury of tumor cells remains unknown. Recently, it has been shown that injured tumor cells have defective mitochondrial respiration. Our studies have shown that activated macrophages can release soluble factors which can alter tumor cell respiration.^ The effects of a conditioned supernatant (CS) from cultures of activated macrophages on tumor cell (TC) mitochondrial respiration was studied. CS was obtained by incubation of BCG-elicited, murine peritoneal macrophage with RPMI-1640 supplemented with 10% FCS and 50 ng/ml bacterial endotoxin. This CS was used to treat cultures of EMT-6 TC for 24 hours. Mitochondrial respiration was measured polarigraphically using a Clark-type oxygen electrode. Cell growth rate was assessed by ('3)H-Thymidine incorporation. Exposure of EMT-6 TC to CS resulted in the inhibition of malate and succinate oxidation 76.6% and 72.9%, respectively. While cytochrome oxidase activity was decreased 61.1%. This inhibition was accompanied by a 98.8% inhibition of DNA synthesis (('3)H-Thymidine incorporation). Inhibition was dose-related with a 21.3% inhibition of succinate oxidase from a 0.3 ml dose of CS and a 50% inhibition with 1.0 mls. Chromatography of CS on Sephacryl S-200 resulted in isolation of an 80,000 and a 55,000 dalton component which contained the respiration inhibiting activity (RIF). These factors were distinct from a 120,000 dalton cytolytic factor determined by bioassay on Actinomycin-D treated L929 cells. RIF activity was also distinct from several other cytostatic factors but was itself associated with 2 peaks of cytostatic activity. Characterization of the RIF activity showed that it was destroyed by trypsin and heat (100(DEGREES)C, 5 min). It was stable over a broad range of pH (4-9) and its production was inhibited by cycloheximide. The RIF did not have a direct effect on isolated mitochondria of TC nor did it induce the formation of a stable intracellular toxin for mitochondria.^ In conclusion, activated macrophages synthesize and secrete an 80,000 and a 55,000 dalton protein which inhibits the mitochondrial metabolism of TC. These factors induce a cytostatic but not a cytolytic effect on TC.^ The macrophage plays a role in the control of normal and tumor cell growth and in tissue involution. Inhibition of respiration may be one mechanism used by macrophages to control cell growth.^