856 resultados para ELECTROLYTE MEMBRANES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-segregation and compartimentalisation are observed experimentally to occur spontaneously on live membranes as well as reconstructed model membranes. It is believed that many of these processes are caused or supported by anomalous diffusive behaviours of biomolecules on membranes due to the complex and heterogeneous nature of these environments. These phenomena are on the one hand of great interest in biology, since they may be an important way for biological systems to selectively localize receptors, regulate signaling or modulate kinetics; and on the other, they provide an inspiration for engineering designs that mimick natural systems. We present an interactive software package we are developing for the purpose of simulating such processes numerically using a fundamental Monte Carlo approach. This program includes the ability to simulate kinetics and mass transport in the presence of either mobile or immobile obstacles and other relevant structures such as liquid-ordered lipid microdomains. We also present preliminary simulation results regarding the selective spatial localization and chemical kinetics modulating power of immobile obstacles on the membrane, obtained using the program.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sericin and fibroin are the two major proteins in the silk fibre produced by the domesticated silkworm, Bombyx mori. Fibroin has been extensively investigated as a biomaterial. We have previously shown that fibroin can function successfully as a substratum for growing cells of the eye. Sericin has been so far neglected as a biomaterial because of suspected allergenic activity. However, this misconception has now been dispelled, and sericin’s biocompatibility is currently indisputable. Aiming at promoting sericin as a possible substratum for the growth of corneal cells in order to make tissue-engineered constructs for the restoration of the ocular surface, in this study we investigated the attachment and growth in vitro of human corneal limbal epithelial cells (HLECs) on sericin-based membranes. Sericin was isolated and regenerated from the silkworm cocoons by an aqueous procedure, manufactured into membranes, and characterized (mechanical properties, structural analysis, contact angles). Primary cell cultures from two donors were established in serum-supplemented media in the presence of murine feeder cells. Membranes made of sericin and fibroin-sericin blends were assessed in vitro as substrata for HLECs in a serum-free medium, in a cell attachment assay and in a 3-day cell growth experiment. While the mechanical characteristics of sericin were found to be inferior to those of fibroin, its ability to enhance the attachment of HLECs was significantly superior to fibroin, as revealed by the PicoGreen® assay. Evidence was also obtained that cells can grow and differentiate on these substrata.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Membranes prepared from a protein, fibroin, isolated from domesticated silkworm (Bombyx mori) silk, support the cultivation of human limbal epithelial (HLE) cells and thus display significant potential as biomaterials for ocular surface reconstruction. We presently extend this promising avenue of research by directly comparing the attachment, morphology and phenotype of primary HLE cell cultures grown on fibroin to that observed on donor amniotic membrane (AM), the current clinical standard substrate for HLE transplantation. Fibroin membranes measuring 6.3 ± 0.5 μm (mean ± sd) in thickness and permeable to FITC dextran of a molecular weight up to 70 kDa, were used. Attachment of HLE cells to fibroin was similar to that supported by tissue culture plastic but approximately 6-fold less than that observed on AM. Nevertheless, epithelia constructed from HLE on fibroin maintained evidence of corneal phenotype (K3/K12 expression) and displayed a comparable number and distribution of ΔNp63+ progenitor cells to that seen in cultures grown on AM. These results support the suitability of membranes constructed from Bombyx mori silk fibroin as substrata for HLE cultivation and encourage progression to studies of efficacy in preclinical models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Poly (ethylene oxide) based polymer electrolyte impregnated with 2-Mercapto benzimidazole was comprehensively characterized by XRD, UV–visible spectroscopy, FTIR as well as electrochemical impedance spectroscopy. It was found that the crystallization of PEO was dramatically reduced and the ionic conductivity of the electrolyte was increased 4.5 fold by addition of 2-Mercapto benzimidazole. UV–visible and FTIR spectroscopes indicated the formation of charge transfer complex between 2-Mercapto benzimidazole and iodine of the electrolyte. Dye-sensitized solar cells with the polymer electrolytes were assembled. It was found that both the photocurrent density and photovoltage were enhanced with respect to the DSC without 2-Mercapto benzimidazole, leading to a 60% increase of the performance of the cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of different electrolyte cations ((Li+, Na+, Mg2+, tetrabutyl ammonium (TBA+)) on the TiO2 conduction band energy (Ec) the effective electron lifetime (τn), and the effective electron diffusion coefficient (Dn) in dye-sensitized solar cells (DSCs) was studied quantitatively. The separation between Ec and the redox Fermi level, EF,redox, was found to decrease as the charge/radius ratio of the cations increased. Ec in the Mg2+ electrolyte was found to be 170 meV lower than that in the Na+ electrolyte and 400 meV lower than that in the TBA+ electrolyte. Comparison of Dn and τn in the different electrolytes was carried out by using the trapped electron concentration as a measure of the energy difference between Ec and the quasi-Fermi level, nEF, under different illumination levels. Plots of Dn as a function of the trapped electron density, nt, were found to be relatively insensitive to the electrolyte cation, indicating that the density and energetic distribution of electron traps in TiO2 are similar in all of the electrolytes studied. By contrast, plots of τn versus nt for the different cations showed that the rate of electron back reaction is more than an order of magnitude faster in the TBA+ electrolyte compared with the Na+ and Li+ electrolytes. The electron diffusion lengths in the different electrolytes followed the sequence of Na+ > Li+ > Mg2+ > TBA+. The trends observed in the AM 1.5 current–voltage characteristics of the DSCs are rationalized on the basis of the conduction band shifts and changes in electron lifetime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular modelling has become a useful and widely applied tool to investigate separation and diffusion behavior of gas molecules through nano-porous low dimensional carbon materials, including quasi-1D carbon nanotubes and 2D graphene-like carbon allotropes. These simulations provide detailed, molecular level information about the carbon framework structure as well as dynamics and mechanistic insights, i.e. size sieving, quantum sieving, and chemical affinity sieving. In this perspective, we revisit recent advances in this field and summarize separation mechanisms for multicomponent systems from kinetic and equilibrium molecular simulations, elucidating also anomalous diffusion effects induced by the confining pore structure and outlining perspectives for future directions in this field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertically-aligned carbon nanotube (VACNT) membranes show very high permeation fluxes due to the inherent smooth and frictionless nature of the interior of the nanotubes. However, the hydrogen selectivities are all in the Knudsen range and are quite low. In this study we grew molecular sieve zeolite imidazolate frameworks (ZIFs) via secondary seeded growth on the VACNT membranes as a gas selective layer. The ZIF layer has a thickness of 5–6 μm and shows good contact with the VACNT membrane surface. The VACNT supported ZIF membrane shows much higher H2 selectivity than Ar (7.0); O2 (13.6); N2 (15.1) and CH4 (9.8). We conclude that tailoring metal–organic frameworks on the membrane surface can be an effective route to improve the gas separation performance of the VACNT membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZIF-8 thin layer has been synthesized on the asymmetric porous polyethersulfone (PES) substrate via secondary seeded growth. Continuous and dense ZIF-8 layer, containing microcavities, has good affinity with the PES support. Single gas permeance was measured for H2, N2, CH4, O2, and Ar at different pressure gradients and temperatures. Molecular sieving separation has been achieved for selectively separating hydrogen from larger gases. At 333 K, the H2 permeance can reach ∼4 × 10−7 mol m−2 s−1 Pa−1, and the ideal separation factors of H2 from Ar, O2, N2, and CH4 are 9.7, 10.8, 9.9, and 10.7, respectively. Long-term hydrogen permeance and H2/N2 separation performance show the stable permeability of the derived membranes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertically-aligned carbon nanotube membranes have been fabricated and characterized and the corresponding gas permeability and hydrogen separation were measured. The carbon nanotube diameter and areal density were adjusted by varying the catalyst vapour concentration (Fe/C ratio) in the mixed precursor. The permeances are one to two magnitudes higher than the Knudsen prediction, while the gas selectivities are still in the Knudsen range. The diameter and areal density effects were studied and compared, the temperature dependence of permeation is also discussed. The results confirm the existence of non-Knudsen transport and that surface adsorption diffusion may affect the total permeance at relative low temperature. The permeance of aligned carbon nanotube membranes can be improved by increasing areal density and operating at an optimum temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While fibroin isolated from the cocoons of domesticated silkworm Bombyx mori supports growth of human corneal limbal epithelial (HLE) cells, the mechanism of cell attachment remains unclear. In the present study we sought to enhance the attachment of HLE cells to membranes of Bombyx mori silk fibroin (BMSF) through surface functionalization with an arginine-glycine-aspartic acid (RGD)-containing peptide. Moreover, we have examined the response of HLE cells to BMSF when blended with the fibroin produced by a wild silkworm, Antheraea pernyi, which is known to contain RGD sequences within its primary structure. A procedure to isolate A. pernyi silk fibroin (APSF) from the cocoons was established, and blends of the two fibroins were prepared at five different BMSF/APSF ratios. In another experiment, BMSF surface was modified by binding chemically the GRGDSPC peptide using a water-soluble carbodiimide. Primary HLE were grown in the absence of serum on membranes made of BMSF, APSF, and their blends, as well as on RGD-modified BMSF. There was no statistically significant enhancing effect on the cell attachment due to the RGD presence. This suggests that the adhesion through RGD ligands may have a complex mechanism, and the investigated strategies are of limited value unless the factors contributing to this mechanism become better known.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work presented in this thesis investigates the mathematical modelling of charge transport in electrolyte solutions, within the nanoporous structures of electrochemical devices. We compare two approaches found in the literature, by developing onedimensional transport models based on the Nernst-Planck and Maxwell-Stefan equations. The development of the Nernst-Planck equations relies on the assumption that the solution is infinitely dilute. However, this is typically not the case for the electrolyte solutions found within electrochemical devices. Furthermore, ionic concentrations much higher than those of the bulk concentrations can be obtained near the electrode/electrolyte interfaces due to the development of an electric double layer. Hence, multicomponent interactions which are neglected by the Nernst-Planck equations may become important. The Maxwell-Stefan equations account for these multicomponent interactions, and thus they should provide a more accurate representation of transport in electrolyte solutions. To allow for the effects of the electric double layer in both the Nernst-Planck and Maxwell-Stefan equations, we do not assume local electroneutrality in the solution. Instead, we model the electrostatic potential as a continuously varying function, by way of Poisson’s equation. Importantly, we show that for a ternary electrolyte solution at high interfacial concentrations, the Maxwell-Stefan equations predict behaviour that is not recovered from the Nernst-Planck equations. The main difficulty in the application of the Maxwell-Stefan equations to charge transport in electrolyte solutions is knowledge of the transport parameters. In this work, we apply molecular dynamics simulations to obtain the required diffusivities, and thus we are able to incorporate microscopic behaviour into a continuum scale model. This is important due to the small size scales we are concerned with, as we are still able to retain the computational efficiency of continuum modelling. This approach provides an avenue by which the microscopic behaviour may ultimately be incorporated into a full device-scale model. The one-dimensional Maxwell-Stefan model is extended to two dimensions, representing an important first step for developing a fully-coupled interfacial charge transport model for electrochemical devices. It allows us to begin investigation into ambipolar diffusion effects, where the motion of the ions in the electrolyte is affected by the transport of electrons in the electrode. As we do not consider modelling in the solid phase in this work, this is simulated by applying a time-varying potential to one interface of our two-dimensional computational domain, thus allowing a flow field to develop in the electrolyte. Our model facilitates the observation of the transport of ions near the electrode/electrolyte interface. For the simulations considered in this work, we show that while there is some motion in the direction parallel to the interface, the interfacial coupling is not sufficient for the ions in solution to be "dragged" along the interface for long distances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, synthetic biodegradable polymers, such as aliphatic polyesters, are largely used in tissue engineering. They provide several advantages compared to natural materials which use is limited by immunocompatibility, graft availability, etc. In this work, poly(L-lactic) acid (PLLA), poly(DL-lactic) acid (PDLA), poly-epsilon-caprolactone (PCL), poly(L-lactic)-co-caprolactone (molar ratio 70/30) (PLCL) were selected because of their common use in tissue engineering. The membranes were elaborated by solvent casting. Membrane morphology was investigated by atomic force microscopy. The membranes were seeded with human fibroblasts from cell line CRL 2703 in order to evaluate the biocompatibility by the Alamar blue test. The roughness of the membranes ranged from 4 nm for PDLA to 120 nm and they presented very smooth surface except for PCL which beside a macroscopic structure due to its hydrophobicity. Human fibroblasts proliferated over 28 days on the membranes proving the non-in vitro toxicity of the materials and of the processing method. A further step will be the fabrication of three-dimensional scaffold for tissue engineering and the treatment of the scaffolds to augment cell adhesion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large-scale purification/separation of bio-substances is a key technology required for rapid production of biological substances in bioengineering. Membrane filtration is a new separation process and has potential to be used for concentration (removal of solvent), desalting (removal of low molecular weight compounds), clarification (removal of particles), and fractionation (protein-protein separation). In this study, we developed an efficient membrane for protein separation based on ceramic nanofibers. Alumina nanofibers were prepared on a porous support and formed large flow passages. The radical changes in membrane structure provided new ceramic membranes with a large porosity (more than 70%) due to the replacement of bulk particles with fine fibers as building components. The pore size had an average of 11 nm and pure water flux was approximately 360 L•h-1•m-2•bar-1. Further surface modification with a self-assembled monolayer of (3-aminopropyl) triethoxysilane enhanced the membrane filtration properties. Characterization with SEM, FTIR, contact angle, and proteins separation tests indicated that the fibril layers uniformly spread on the surface of the porous support. Moreover, the membrane surface was changed from hydrophilic to hydrophobic after silane groups were grafted. It demonstrated that the silane-grafted alumina fiber membrane can reject 100% BSA protein and 92% cellulase protein. It was also able to retain 75% trypsin protein while maintaining a permeation flux of 48 L•h-1•m-2•bar-1.