132 resultados para ELECTROCATALYSTS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work assessment materials can be used as fuel cells electrocatalysts. The alkaline fuel cell though was less studied, has some advantages compared to the acid configuration. The materials assesment were Au polycrystalline and intermetallics ordered phases of AuIn, AuSn and AuSb2. Your electrocatalytic properties were studied across cyclic voltametry and chronoamperometry techniques in Sodium Hydroxide 0,15M and Metanol 0,15M solution. The results obtained show a more efficiency to intermetallic AuIn as electrocatalyst for the oxidation reaction of methanol in alkaline medium, it showed high levels of current density and on set potential less positive compared to Au polycrystalline. The intermetallic AuSn showed activity just higher concentrations of methanol. Except AuSb2, who represented himself unstable in alkaline media, the intermetallics AuIn and AuSn present a promising future as anode materials for the oxidation in alkaline medium

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aiming to reduce the cost of electrocatalysts and a greater resistance to CO poisoning this work was to study the adsorption and oxidation of carbon monoxide on ordered intermetallic phases AuIn, AuSb2, AuSn, PdSb and PdSn using voltammetric techniques in alkaline electrolyte solution. The results suggest that the AuSn and PdSn intermetallics has some form of resistance to CO poisoning. It is assumed that this behavior is a result of electronic effect and the effect of the third body has been achieved by adding a second metal to Au and Pd. However, further studies should be conducted to confirm this hypothesis as to test these materials as electrocatalysts in the reaction of oxidation of fuels

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of electrocatalysts for the oxidation of methanol and ethanol is very important, because these alcohols may be used in the anode fuel cells which convert chemical energy directly into electrical energy with high efficiency, cleanly and with low noise. Thus, this study reports to the synthesis of nanocatalysts of PtAu supported on carbon by microemulsion method. The physical characterization of these catalysts is performed through the techniques of X-ray diffraction and transmission electron microscopy. The catalytic activity of the prepared materials was studied using conventional electrochemical techniques and also the technique of spectro-electrochemical in situ FTIR, which allows identification of intermediates and products of the reactions. From the x-ray diffraction, it was observed that the thermal treatment applied to catalysts favored incorporation of Au into the crystal lattice of Pt,that is, increased the formation of PtAu alloy. Micrographs indicated particle size about 3 nm to materials not heat treated and 9 nm to materials subjected to thermal treatment (heating at 150 ° C for 1h and 30 min in argon atmosphere). Current density oxidation of methanol on PtAu / C were superior to pure platinum. Spectroscopic results indicated the presence of formate in solution in 50:50 and the composition showed bands for CO2, indicating complete oxidation, in lower potential. During ethanol oxidation on the catalyst PtAu, the main product formed was acetate, product of incomplete oxidation. The good performance for methanol oxidation can be attributed to large amounts of oxygen species adsorbed on the catalyst surface, or an electronic effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work the influence of variations in the borohydrate reduction method on the properties of PtRu/C electrocatalysts was investigated. The electrocatalysts were prepared using 1:1 ; 2:1; 5:1; 50:1 and 250:1 molar ratios of NaBH4 to metals. The reduction was also performed by dripping or by fast addition of the solution. The results showed that PtRu nanoparticles obtained by fast addition had the smallest crystallite sizes. It was also noted that the catalytic activity increased as the borohydrate:metal molar ratio increased. The PtRu/C electrocatalyst (50:1) obtained by fast addition presented the best catalytic activity for ethanol electro-oxidation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Direct methanol fuel cells (DMFCs) without external pumps or other ancillary devices for fuel and oxidant supply are known as passive DMFCs and are potential candidates to replace lithium-ion batteries in powering portable electronic devices. This paper presents the results obtained from a membrane electrode assembly (MEA) specifically designed for passive DMFCs. Appropriated electrocatalysts were prepared and the effect of their loadings was investigated. Two types of gas diffusion layers (GDL) were also tested. The influence of the methanol concentration was analyzed in each case. The best MEA performance presented a maximum power density of 11.94 mW cm-2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 20% Pt3Sn/C catalyst was prepared by reduction with formic acid and used in a direct ethanol fuel cell at low temperatures. The electro-catalytic activity of this bimetallic catalyst was compared to that of a commercial 20% Pt/C catalyst. The PtSn catalyst showed better results in the investigated temperature range (30 degrees-70 degrees C). Generally, Sn promotes ethanol oxidation by adsorption of OH species at considerably lower potentials compared to Pt, allowing the occurrence of a bifunctional mechanism. The bimetallic catalyst was physico-chemically characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses. The presence of SnO2 in the bulk and surface of the catalyst was observed. It appears that SnO2 can enhance the ethanol electro-oxidation activity at low potentials due to the supply of oxygen-containing species for the oxidative removal of CO and CH3CO species adsorbed on adjacent Pt active sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electro-oxidation of ethanol was investigated on electrodeposited layers of Pd, Pt, and Rh in alkaline electrolyte. The reaction products were monitored by experiments of online differential electrochemical mass spectrometry (DEMS). Potentiodynamic curves for the ethanol electro-oxidation catalyzed by these three different metal electrocatalysts showed similar onset potentials, but the highest Faradaic current peak was observed for the Pt electrocatalyst. Online DEMS experiments evidenced similar amounts of CO2 for the three different materials, but Pd presented the higher production of ethylacetate (acetic acid). This indicated that the electrochemical oxidation of ethanol on the Pd surface occurred to a higher extent. The formation of methane, which was observed for Pt and Rh, after potential excursions to lower potentials, was absent for Pd. On the basis of the obtained results, it was stated that, on Pt and Rh, the formation of CO2 occurs mainly via oxidation of CO and CH (x,ad) species formed after dissociative adsorption of ethanol or ethoxy species that takes place only at low potentials. This indicates that the dissociative adsorption of ethanol or ethoxy species is inhibited at higher potentials on Pt and Rh. On the other hand, on the Pd electrocatalyst, the reaction may occur via nondissociative adsorption of ethanol or ethoxy species at lower potentials, followed by oxidation to acetaldehyde and, after that, by a further oxidation step to acetic acid on the electrocatalyst surface. Additionally, in a parallel route, the acetaldehyde molecules adsorbed on the Pd surface can be deprotonated, yielding a reaction intermediate in which the carbon-carbon bond is less protected, and therefore, it can be dissociated on the Pd surface, producing CO2, after potential excursions to higher potentials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Herein, it was investigated for the first time the electro-oxidation of ethanol on Pt and PtRu electrodeposits in acidic media by using in situ surface enhanced infrared absorption spectroscopy with attenuated total reflection (ATR-SEIRAS). The experimental setup circumvents the weak absorbance signals related to adsorbed species, usually observed for rough, electrodeposited surfaces, and allows a full description of the CO coverage with the potential for both catalysts. The dynamics of adsorption-oxidation of CO was accessed by ATR-SEIRAS experiments (involving four ethanol concentrations) and correlated with expressions derived from a simple kinetic model. Kinetic analysis suggests that the growing of the CO adsorbed layer is nor influenced by the presence of Ru neither by the concentration of ethanol. The results suggest that the C-C scission is not related to the presence of Ru and probably happens at Pt sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oxygen reduction reaction (ORR) was studied in KOH electrolyte on carbon supported epsilon-manganese dioxide (epsilon-MnO2/C). The epsilon-MnO2/C catalyst was prepared via thermal decomposition of manganese nitrate and carbon powder (Vulcan XC-72) mixtures. X-ray powder diffraction (XRD) measurements were performed in order to determine the crystalline structure of the resulting composite, while energy dispersive X-ray analysis (EDX) was used to evaluate the chemical composition of the synthesized material. The electrochemical studies were conducted using cyclic voltammetry (CV) and quasi-steady state polarization measurements carried out with an ultra thin layer rotating ring/disk electrode (RRDE) configuration. The electrocatalytic results obtained for 20% (w/w) Pt/C (E-TEK Inc., USA) and alpha-MnO2/C for the ORR, considered as one of the most active manganese oxide based catalyst for the ORR in alkaline media, were included for comparison. The RRDE results revealed that the ORR on the MnO2 catalysts proceeds preferentially through the complete 4e(-) reduction pathway via a 2 plus 2e(-) reduction process involving hydrogen peroxide as an intermediate. A benchmark close to the performance of 20% (w/w) Pt/C (E-TEK Inc., USA) was observed for the epsilon-MnO2/C material in the kinetic control region, superior to the performance of alpha-MnO2/C, but a higher amount of HO2- was obtained when epsilon-MnO2/C was used as catalyst. The higher production of hydrogen peroxide on epsilon-MnO2/C was related to the presence of structural defects, typical of this oxide, while the better catalytic performance in the kinetic control region compared to alpha-MnO2/C was related with the higher electrochemical activity for the proton insertion kinetics, which is a structure sensitive process. (C) 2012 Elsevier Ltd. All rights reserved.