983 resultados para EFFLUENT


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photocatalytic oxidation (PCO) process is an effective way to deal with organic pollutants in wastewater which could be difficult to be degraded by conventional biological treatment methods. Normally the TiO2 powder in nanometre size range was directly used as photocatalyst for dye degradation in wastewater. However the titanium dioxide powder was arduous to be recovered from the solution after treatment. In this application, a new form of TiO2 (i.e. pillar pellets ranging from 2.5 to 5.3 mm long and with a diameter of 3.7 mm) was used and investigated for photocatalytic degradation of textile dye effluent. A test system was built with a flat plate reactor (FPR) and UV light source (blacklight and solar simulator as light source respectively) for investigating the effectiveness of the new form of TiO2. It was found that the photocatalytic process under this configuration could efficiently remove colours from textile dyeing effluent. Comparing with the TiO2 powder, the pellet was very easy to recovered from the treated solution and can be reused in multiple times without the significant change on the photocatalytic property. The results also showed that to achieve the same photocatalytic performance, the FPR area by pellets was about 91% smaller than required by TiO2 powder. At least TiO2 pellet could be used as an alternative form of photocatalyst in applications for textile effluent treatment process, also other wastewater treatment processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water repellent soils are difficult to irrigate and susceptible to preferential flow, which enhances the potential for accelerated leaching to groundwater of hazardous substances. Over 5 Mha of Australian soil is water repellent, while treated municipal sewage is increasingly used for irrigation. Only if a critical water content is exceeded will repellent soils become wettable. To avoid excessive loss of water from the root zone via preferential flow paths, irrigation schemes should therefore aim to keep the soil wet enough to maintain soil wettability. Our objective was to monitor the near-surface water content and water repellency in a blue gum (Eucalyptus globulus) plantation irrigated with treated sewage. The plantation's sandy soil surface was strongly water repellent when dry. For 4 months, three rows of 15 blue gum trees each received no irrigation, three other rows received 50% of the estimated potential water use minus rainfall, and three more rows received 100%. During this period, 162 soil samples were obtained in three sampling rounds, and their water content (% dry mass) and degree of water repellency determined. Both high and low irrigation effectively wetted up the soil and eliminated water repellency after 2 (high) or 4 (low) months. A single-peaked distribution of water contents was observed in the soil samples, but the water repellency distribution was dichotomous, with 44% extremely water-repellent and 36% wettable. This is consistent with a threshold water content at which a soil sample changes from water repellent to wettable, with spatial variability of this threshold creating a much wider transition zone at the field scale. We characterized this transition zone by expressing the fraction of wettable samples as a function of water content, and demonstrated a way to estimate from this the wettable portion of a field from a number of water content measurements. To keep the plantation soil wettable, the water content must be maintained at a level at which a significant downward flux is likely, with the associated enhanced leaching. At water contents with negligible downward flux, the field is water repellent, and leaching through preferential flow paths is likely. Careful management is needed to resolve these conflicting requirements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The majority of on-site sewage management systems in Australia fail to perform to expectations. About 60% to 80% of on-site systems reportedly fail to produce acceptable effluent quality, and there is an increaed concern about the risks associated with public health and environmental pollution. In Victoria, a large proportion of septic tank installations have been reported to discharge highly polluted waste to drains and streams. Users, often considered by regulators as operators, have to bear the costs of upgrade/replacement of their old systems to meet stringent water quality guidelines. Some of the common problems include clogging of the disposal fields due to solids and organic overloading and surfacing of highly polluted effluent. Large land application area is subsequently required for irrigating the effluent and/or installation of upgraded disposal fields.
This paper investigates the effectiveness of various types of textile and plastic media, in polishing primary tank effluent, downstream from a typical two-compartment septic tank system. Results to date show that high biochemical oxygen demand removal rates are achieved from the textile and plastic media (up to 86% and 83% respectively). At these removal levels, the performance of a combined conventional septic tank system and plastic/textile filters is comparable to that of an advanced aerated wastewater treatment system. This approach, subject to further investigation, could provide a less costly upgrade.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that waste water treatment plant (WWTP) effluents are estrogenic. There has been much less consideration of the androgenic activity of WWTP effluents. To partly address the shortage of information on androgens in Australian WWTP effluents, in August 2006, and again in 2007, we collected discharges from up to 45 Victorian WWTPs (~25% of all WWTPs in Victoria), grouped by treatment process, i.e. activated sludge, extended aeration, and lagoon based treatment, and measured the total estrogenic, androgenic, retinoic acid, and aromatic hydrocarbon hydrogenase activity of the effluents using a hybrid yeast bioassay. This paper will concentrate on the androgenic activity and male hormone concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endocrine disrupting chemicals (EDCs) can alter endocrine function in exposed animals. Such critical effects, combined with the ubiquity of EDCs in sewage effluent and potentially in tapwater, have led to concerns that they could be major physiological disruptors for wildlife and more controversially for humans. Although sewage effluent is known to be a rich source of EDCs, there is as yet no evidence for EDC uptake by invertebrates that live within the sewage treatment system. Here, we describe the use of an extraction method and GC–MS for the first time to determine levels of EDCs (e.g., dibutylphthalate, dioctylphthalate, bisphenol-A and 17β-estradiol) in tissue samples from earthworms (Eisenia fetida) living in sewage percolating filter beds and garden soil. To the best of our knowledge, this is the first such use of these techniques to determine EDCs in tissue samples in any organism. We found significantly higher concentrations of these chemicals in the animals from sewage percolating filter beds. Our data suggest that earthworms can be used as bioindicators for EDCs in these substrates and that the animals accumulate these compounds to levels well above those reported for waste water. The potential transfer into the terrestrial food chain and effects on wildlife are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three field sites were chosen to study the environmental assimilative capacity of heavy metals in soil. These sites were the Werribee Farm and the Myome Farm in Australia and Shenyang Zhangshi Irrigation Area in China. The Werribee Farm and the Shenyang Zhangshi Irrigation Area received sewage treatment and application on land for a long time. The Myome farm is an experimental site in which investigations on land application of municipal wastewater on water repellent soils is currently being trailed. Heavy metal contamination, in particular Cr, Cu and Zn, in the Land Filtration soil of Werribee Farm was widespread. More than a century of sewage irrigation has occurred in the Werribee Farm. The temporal distribution pattern of heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) in the soil at this site follow an exponential trend with time and the spatial distribution pattern of accumulation of heavy metals in different paddocks correlates with the number of years of sewage irrigation at that site in the Farm. Extensive sewage irrigation at Shenyang Zhangshi Irrigation Area resulted in significant Cd pollution in soil-plant (rice) system and poses a significant threat to the health of local people. Even after eight years since cessation of sewage irrigation, the bioavailable fractions of Cd in the soil as analyzed by sequential extraction techniques were very high thus illustrating long-term persistence. The simultaneous competitive adsorption of metals in water repellent soils (at Myome Farm in South Australia) was studied. In the competitive situation, Cr, Pb and Cu are the heavy metal cations more strongly adsorbed by the soil, whereas Cd, Ni and Zn are the least adsorbed. The increase in Freundlich adsorption capacity by clay amendment suggested that clayed soils are capable sorption of higher heavy metal loadings compared to the non-clayed water repellent soil, which is more vulnerable to heavy metal inputs. A simple model of environmental assimilative capacity is proposed. The results of comparison of the three field sites shows that the Werribee Farm has a higher environmental assimilative capacity of heavy metals in soil than the soils at Shenyang Zhangshi Irrigation Area and Myome Farm, however heavy metal contamination at Werribee Farm is still a concern. The model of environmental assimilative capacity of heavy metals in soil is an effective tool to assist management of effluent applied land irrigation systems and can be used to better design environmental engineering systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The project was conducted between May 2006 and September 2007, and involved the collection of effluent samples from 45 wastewater treatment plants (WWTPs). The 45 WWTPs included 16 lagoon-based plants and 29 with activated sludge-based processes. Permission was obtained from all the relevant water authorities to collect samples of final effluent at point of discharge to the environment, whether that was to a creek, a river, the ocean, or the land. Samples were collected on two occasions, namely, in August 2006 (winter) and late February–early March 2007 (summer), and subjected to a number of biological and chemical analyses, including toxicity tests, measurement of hormonal (estrogenic) activity using yeast-based bioassays, and measurement of specific hormonal concentrations using enzyme-linked immunosorbent assays (ELISAs). Almost all of the effluents examined showed estrogenic activity: in winter, no activity to 73 ng/l 17β-estradiol equivalents (EEQ); and in summer, no activity to 20 ng/l EEQ. On the whole, the levels of estrogenic activity observed were comparable with the range recently reported in Australia and New Zealand using human estrogen receptor-based assays (“not detected” to ~10 ng/l EEQ). The low/no bioassay response was confirmed by the chemical assessment of estradiol, estrone, and ethinyl estradiol concentrations by ELISA, which returned concentrations of these compounds for the most part below 10 ng/l.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effectiveness of various photocatalysts including titanium dioxide and other oxidants was investigated in a solar powered UV photocatalytic oxidation system for colour removal in dyeing effluent. A semi-empirical constant model and guidelines were developed to assist the design and to evaluate the full scale of the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resin acids are reported to be of major toxicological importance in pulp mill effluents for Rainbow Trout. Their determination, using a high performance liquid chromatographic method, is described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Available effluent treatment systems to treat wool scour and dyehouse wastewaters were investigated. Electroflotation was found to be the most practicable treatment process as it had the ability to reduce the contaminant load in wastewaters. The quality of the treated wastewaters was then suitable for disposal to sewer or reuse on site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vine-row soil chemical and physical properties were significantly and detrimentally altered by drip irrigation of treated municipal effluent. Hydraulic gradients under the drip-emitter fostered strong chemical gradients and high variability of vine-row soil parameters, complicating soil management. Gypsum improves soil properties without impacting vine production when applied in small quantities.