229 resultados para EDDIES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structure and climate of the east North Atlantic are appraised within a framework of in situ measurement and altimeter remote sensing from 0 degree - 60 degree N. Long zonal expendable bathythermograph /conductivity-temperature-depth probe sections show repeating internal structure in the North Atlantic Ocean. Drogued buoys and subsurface floats give westward speeds for eddies and wavelike structure. Records from longterm current meter deployments give the periodicity of the repeating structure. Eddy and wave characteristics of period, size or wavelength, westward propagation speed, and mean currents are derived at 20 degree N, 26 degree N, 32.5 degree N, 36 degree N and 48 degree N from in situ measurements in the Atlantic Ocean. It is shown that ocean wave and eddy-like features measured in situ correlate with altimeter structure. Interior ocean wave crests or cold dome-like temperature structures are cyclonic and have negative surface altimeter anomalies; mesoscale internal wave troughs or warm structures are anticyclonic and have positive surface height anomalies. Along the Eastern Boundary, flows and temperature climate are examined in terms of sla and North Atlantic Oscillation (NAO) Index. Longterm changes in ocean climate and circulation are derived from sla data. It is shown that longterm changes from 1992 to 2002 in the North Atlantic Current and the Subtropical Gyre transport determined from sla data correlate with winter NAO Index such that maximum flow conditions occurred in 1995 and 2000. Minimum circulation conditions occurred between 1996-1998. Years of extreme negative winter NAO Index result in enhanced poleward flow along the Eastern Boundary and anomalous winter warming along the West European Continental Slope as was measured in 1990, 1996, 1998 and 2001.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An overview of the main oceanographic features of the eastern North Atlantic boundary, with emphasis toward the upper layers, is presented. The principal features discussed are: water mass boundaries; forcing by wind, density and tides; topographic features and effects; fronts; upwelling and downwelling; poleward flows; coastal currents; eddies. The occurrence and spatial and seasonal variability of these features is described in five regional sections: Celtic Sea and western English Channel; Bay of Biscay; western Iberia; Gulf of Cadiz; northwest Africa. This paper is intended to provide a base of physical oceanographic knowledge in support of research in fisheries, biological and chemical oceanography, and marine biology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Continuous Plankton Recorder has been deployed on a seasonal basis in the north Pacific since 2000, accumulating a database of abundance measurements for over 290 planktonic taxa in over 3,500 processed samples. There is an additional archive of over 10,000 samples available for further analyses. Exxon Valdez Oil Spill Trustee Council financial support has contributed to about half of this tally, through four projects funded since 2002. Time series of zooplankton variables for sub-regions of the survey area are presented together with abstracts of eight papers published using data from these projects. The time series covers a period when the dominant climate signal in the north Pacific, the Pacific Decadal Oscillation (PDO), switched with unusual frequency between warm/positive states (pre-1999 and 2003-2006) and cool/negative states (1999-2002 and 2007). The CPR data suggest that cool negative years show higher biomass on the shelf and lower biomass in the open ocean, while the reverse is true in warm (PDO positive) years with lower shelf biomass (except 2005) and higher oceanic biomass. In addition, there was a delay in plankton increase on the Alaskan shelf in the colder spring of 2007, compared to the warmer springs of the preceding years. In warm years, smaller species of copepods which lack lipid reserves are also more common. Availability of the zooplankton prey to higher trophic levels (including those that society values highly) is therefore dependent on the timing of increase and peak abundance, ease of capture and nutritional value. Previously published studies using these data highlight the wide-ranging applicability of CPR data and include collaborative studies on; phenology in the key copepod species Neocalanus plumchrus, descriptions of distributions of decapod larvae and euphausiid species, the effects of hydrographic features such as mesoscale eddies and the North Pacific Current on plankton populations and a molecularbased investigation of macro-scale population structure in N. cristatus. The future funding situation is uncertain but the value of the data and studies so far accumulated is considerable and sets a strong foundation for further studies on plankton dynamics and interactions with higher trophic levels in the northern Gulf of Alaska.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ecohydrodynamics investigates the hydrodynamic constraints on ecosystems across different temporal and spatial scales. Ecohydrodynamics play a pivotal role in the structure and functioning of marine ecosystems, however the lack of integrated complex flow models for deep-water ecosystems beyond the coastal zone prevents further synthesis in these settings. We present a hydrodynamic model for one of Earth's most biologically diverse deep-water ecosystems, cold-water coral reefs. The Mingulay Reef Complex (western Scotland) is an inshore seascape of cold-water coral reefs formed by the scleractinian coral Lophelia pertusa. We applied single-image edge detection and composite front maps using satellite remote sensing, to detect oceanographic fronts and peaks of chlorophyll a values that likely affect food supply to corals and other suspension-feeding fauna. We also present a high resolution 3D ocean model to incorporate salient aspects of the regional and local oceanography. Model validation using in situ current speed, direction and sea elevation data confirmed the model's realistic representation of spatial and temporal aspects of circulation at the reef complex including a tidally driven current regime, eddies, and downwelling phenomena. This novel combination of 3D hydrodynamic modelling and remote sensing in deep-water ecosystems improves our understanding of the temporal and spatial scales of ecological processes occurring in marine systems. The modelled information has been integrated into a 3D GIS, providing a user interface for visualization and interrogation of results that allows wider ecological application of the model and that can provide valuable input for marine biodiversity and conservation applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Novel techniques have been developed for increasing the value of cloud-affected sequences of Advanced Very High Resolution Radiometer (AVHRR) sea-surface temperature (SST) data and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean colour data for visualising dynamic physical and biological oceanic processes such as fronts, eddies and blooms. The proposed composite front map approach is to combine the location, strength and persistence of all fronts observed over several days into a single map, which allows intuitive interpretation of mesoscale structures. This method achieves a synoptic view without blurring dynamic features, an inherent problem with conventional time-averaging compositing methods. Objective validation confirms a significant improvement in feature visibility on composite maps compared to individual front maps. A further novel aspect is the automated detection of ocean colour fronts, correctly locating 96% of chlorophyll fronts in a test data set. A sizeable data set of 13,000 AVHRR and 1200 SeaWiFS scenes automatically processed using this technique is applied to the study of dynamic processes off the Iberian Peninsula such as mesoscale eddy generation, and many additional applications are identified. Front map animations provide a unique insight into the evolution of upwelling and eddies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The European Slope Current (SC) is a major section of the warm poleward flow from the Atlantic to the Arctic, which also moderates the exchange of heat, salt, nutrients and carbon between the deep ocean and the European shelf seas. The mean structure of the geostrophic flow, seasonality, interannual variability and long-term trend of SC are appraised with an unprecedented continuous 20-year satellite altimeter dataset. Comparisons with long term in situ data showed a maximum correlation of r2=0.51 between altimeter and Acoustic Doppler Current Profilers (ADCP), with similar results for drogued buoy data. Mean geostrophic currents were appraised more comprehensively than previous attempts, and the paths of 4 branches of the North Atlantic Current (NAC) and positions of 5 eddies in the region were derived quantitatively. A consistent seasonal cycle in the flow of the SC was found at all 8 sections along the European shelf slope, with maximum poleward flow in the winter and minimum in the summer. The seasonal difference in the altimetry current speed amounted to ~8-10 cm s-1 at the northern sections, but only ~5 cm s-1 on the Bay of Biscay slopes. This extended altimeter dataset indicates significant regional and seasonal variations, and has revealed new insights into the interannual variability of the SC. It is shown that there is a peak poleward flow at most positions along a ~2000 km stretch of the continental slope from Portugal to Scotland during 1995-1997, but this did not clearly relate to the extreme negative North Atlantic Oscillation (NAO) in the winter of 1995-1996. The speed of the SC exhibited a long term decreasing trend of ~1% per year. By contrast the NAC showed no significant trend over the 20-year period. Major changes in the NAC occurred three times, and these changes followed decreases in the NAO index.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the summer of 2012, 20 surface drifters drogued at 50 m depth were deployed on the continental slope to the north of the Bay of Biscay. Initially after release the drifters all crossed the slope, with 14 continuing equatorward, parallel to the slope following an absolute dynamic topography feature and 6 returning to the slope, in an eddy, visible in chlorophyll-a maps. Lagrangian statistics show an anisotropic flow field that becomes less tied to the absolute dynamic topography and increasingly dominated by diffusion and eddy processes. A weaker tie to the absolute dynamic topography allowed for total of 8 of the drifters crossed from the deep water onto the shelf, showing pathways for flow across the slope. A combination of drifter trajectories, absolute dynamic topography and chlorophyll-a concentration maps have been used to show that small anticyclonic eddies, tied to the complex slope topography provide a mechanism for on shelf transport. During the summer, the presence of these eddies can be seen in surface chlorophyll-a maps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the summer of 2012, 20 surface drifters drogued at 50 m depth were deployed on the continental slope to the north of the Bay of Biscay. Initially after release the drifters all crossed the slope, with 14 continuing equatorward, parallel to the slope following an absolute dynamic topography feature and 6 returning to the slope, in an eddy, visible in chlorophyll-a maps. Lagrangian statistics show an anisotropic flow field that becomes less tied to the absolute dynamic topography and increasingly dominated by diffusion and eddy processes. A weaker tie to the absolute dynamic topography allowed for total of 8 of the drifters crossed from the deep water onto the shelf, showing pathways for flow across the slope. A combination of drifter trajectories, absolute dynamic topography and chlorophyll-a concentration maps have been used to show that small anticyclonic eddies, tied to the complex slope topography provide a mechanism for on shelf transport. During the summer, the presence of these eddies can be seen in surface chlorophyll-a maps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ACC is a climatically relevant frontal structure of global importance that regularly develops instabilities which grow into meanders that eventually evolve into long-lived cyclonic eddies. These eddies exhibit sustain primary productivity that can last several months fuelled by local resupply of nutrients. During April-May 2015 we conducted an intensive field experiment in the Southern Ocean (SMILES) where we sampled and tracked an ACC meander as it developed into an eddy and later vanished some 90 days later. The meander and later eddy physical characteristics were observed with a combination of high resolution hydrography, ADCP and turbulence observations in addition to surface and depth resolved biogeochemical observations of nutrients and phytoplankton. The life and death of the eddy was subsequently tracked through ARGO, BIO-ARGO and remote sensing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ESA Data User Element (DUE) funded GlobCurrent project (http://www.globcurrent.org) aims to: (i) advance the quantitative estimation of ocean surface currents from satellite sensor synergy; and (ii) demonstrate impact in user-led scientific, operational and commercial applications that, in turn, will improve and strengthen the uptake of satellite measurements. Today, a synergetic approach for quantitative analysis can build on high-resolution imaging radar and spectrometer data, infrared radiometer data and radar altimeter measurements. It will further integrate Sentinel-3 in combination with Sentinel-1 SAR data. From existing and past missions, it is often demonstrated that sharp gradients in the sea surface temperature (SST) field and the ocean surface chlorophyll-a distribution are spatially correlated with the sea surface roughness anomaly fields at small spatial scales, in the sub-mesocale (1-10 km) to the mesoscale (30-80 km). At the larger mesoscale range (>50 km), information derived from radar altimeters often depict the presence of coherent structures and eddies. The variability often appears largest in regions where the intense surface current regimes (>100 - 200 km) are found. These 2-dimensional structures manifested in the satellite observations represent evidence of the upper ocean (~100-200 m) dynamics. Whereas the quasi geostrophic assumption is valid for the upper ocean dynamics at the larger scale (>100 km), possible triggering mechanisms for the expressions at the mesoscale-to-submesoscale may include spiraling tracers of inertial motion and the interaction of the wind-driven Ekman layer with the quasi-geostrophic current field. This latter, in turn, produces bands of downwelling (convergence) and upwelling (divergence) near fronts. A regular utilization of the sensor synergy approach with the combination of Sentinel-3 and Sentinel-1 will provide a highly valuable data set for further research and development to better relate the 2-dimensional surface expressions and the upper ocean dynamics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho combina esforços de simulação numérica e de análise de dados para investigar a dinâmica em diversos compartimentos (oceano aberto, plataforma continental e zona costeira-estuarina) e, em multiplas escalas, na Margem Continental Leste Brasileira (MCLB). A circulação de largo e mesoescala espacial e a propagação da maré barotrópica são investigadas através de uma configuração aninhada do modelo numérico ROMS. O estudo da dinâmica regional da Baía de Camamu (CMB) baseia-se na análise de dados locais. A MCLB, localizada a SW do Atlântico Sul entre 8±S e 20±S, possui plataforma estreita, batimetria complexa, e baixa produtividade primária. A sua dinâmica é influenciada pela divergência da Corrente Sul Equatorial (CSE). As simulações refletem as conexões sazonais e espaciais entre a Corrente do Brasil e a Contra Corrente Norte do Brasil , em conexão com a dinâmica da CSE. As simulações revelam atividades vorticais nas proximidades da costa e interações com a dinâmica costeira, cujos padrões são descritos. A validação do modelo em mesoescala é baseada em cálculos de energia cinética turbulenta e em dados históricos de transporte. A CMB, localizada a 13±400S, abriga uma comunidade piscatória tradicional e extenso de manguezal. Situa-se porém sobre uma bacia sedimentar com grande reservas de óleo e gás, estando em tensão permanente de impacto ambiental. Neste trabalho sumarizamos as condições físicas regionais e investigamos sua dinâmica interna, focando sua variabilidade em amostragens realizadas sob condições de seca (Setembro de 2004) e de chuva (Julho de 2005). Finalmente, o modelo numérico ROMS é forçado com o sinal de maré, empregando-se uma configuração simples (com coeficientes de atrito de fundo constantes e condições hidrográficas homogéneas), com o intuito de avaliar sua resposta e investigar a natureza da propagação da maré barotrópica na MCLB, convergindo na CMB. A análise da resposta do modelo à maré basea-se em séries históricas do nível do mar para a MCLB e dados recentes da CMB.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de doutoramento, Ciências Geofísicas e da Geoinformação (Oceanografia), Universidade de Lisboa, Faculdade de Ciências, 2014

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Senior thesis written for Oceanography 445

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Larval habitat for three highland Anopheles species: Anopheles albimanus Wiedemann, Anopheles pseudopunctipennis Theobald, and Anopheles punctimacula Dyar and Knab was related to human land uses, rivers, roads, and remotely sensed land cover classifications in the western Ecuadorian Andes. Of the five commonly observed human land uses, cattle pasture (n = 30) provided potentially suitable habitat for A. punctimacula and A. albimanus in less than 14% of sites, and was related in a principal components analysis (PCA) to the presence of macrophyte vegetation, greater surface area, clarity, and algae cover. Empty lots (n = 30) were related in the PCA to incident sunlight and provided potential habitat for A. pseudopunctipennis and A. albimanus in less than 14% of sites. The other land uses surveyed (banana, sugarcane, and mixed tree plantations; n = 28, 21, 25, respectively) provided very little standing water that could potentially be used for larval habitat. River edges and eddies (n = 41) were associated with greater clarity, depth, temperature, and algae cover, which provide potentially suitable habitat for A. albimanus in 58% of sites and A. pseudopunctipennis in 29% of sites. Road-associated water bodies (n = 38) provided potential habitat for A. punctimacula in 44% of sites and A. albimanus in 26% of sites surveyed. Species collection localities were compared to land cover classifications using Geographic Information Systems software. All three mosquito species were associated more often with the category “closed/open broadleaved evergreen and/or semi-deciduous forests” than expected (P ≤ 0.01 in all cases), given such a habitat’s abundance. This study provides evidence that specific human land uses create habitat for potential malaria vectors in highland regions of the Andes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study examines the importance of low saline waters and resulting barrier layer in the dynamics of the ASWP using observational data.The oceanic general circulation models (OGCM) are very useful for exploring the processes responsible for the ASWP and their variability. The circulation and thermohaline structure stimulated by an OGCM changes a lot when the resolution is increased from mesoscale to macro scale. For a reasonable simulation of the ASWP, we must include the mesoscale turbulence in numerical models. Especially the SEAS is an eddy prominent region with a horizontal dimension of 100 to 500 km and vertical extent of hundred meters. These eddies may have an important role on the evolution of ASWP, which has not been explored so far.Most of the earlier studies in the SEAS showed that the heat buildup in the mixed layer during the pre-monsoon (March-May) is primarily driven by the surface heat flux through the ocean-atmosphere interface, while the 3-dimensional heat budget of the ML physical processes that are responsible for the formation of the ASWP are unknown. With this background the present thesis also examines the relative importance of mixed layer processes that lead to the formation of warm pool in the SEAS.