972 resultados para ECG Online Prediction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nation's freeway systems are becoming increasingly congested. A major contribution to traffic congestion on freeways is due to traffic incidents. Traffic incidents are non-recurring events such as accidents or stranded vehicles that cause a temporary roadway capacity reduction, and they can account for as much as 60 percent of all traffic congestion on freeways. One major freeway incident management strategy involves diverting traffic to avoid incident locations by relaying timely information through Intelligent Transportation Systems (ITS) devices such as dynamic message signs or real-time traveler information systems. The decision to divert traffic depends foremost on the expected duration of an incident, which is difficult to predict. In addition, the duration of an incident is affected by many contributing factors. Determining and understanding these factors can help the process of identifying and developing better strategies to reduce incident durations and alleviate traffic congestion. A number of research studies have attempted to develop models to predict incident durations, yet with limited success. ^ This dissertation research attempts to improve on this previous effort by applying data mining techniques to a comprehensive incident database maintained by the District 4 ITS Office of the Florida Department of Transportation (FDOT). Two categories of incident duration prediction models were developed: "offline" models designed for use in the performance evaluation of incident management programs, and "online" models for real-time prediction of incident duration to aid in the decision making of traffic diversion in the event of an ongoing incident. Multiple data mining analysis techniques were applied and evaluated in the research. The multiple linear regression analysis and decision tree based method were applied to develop the offline models, and the rule-based method and a tree algorithm called M5P were used to develop the online models. ^ The results show that the models in general can achieve high prediction accuracy within acceptable time intervals of the actual durations. The research also identifies some new contributing factors that have not been examined in past studies. As part of the research effort, software code was developed to implement the models in the existing software system of District 4 FDOT for actual applications. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distance learning is growing and transforming educational institutions. The increasing use of distance learning by higher education institutions and particularly community colleges coupled with the higher level of student attrition in online courses than in traditional classrooms suggests that increased attention should be paid to factors that affect online student course completion. The purpose of the study was to develop and validate an instrument to predict community college online student course completion based on faculty perceptions, yielding a prediction model of online course completion rates. Social Presence and Media Richness theories were used to develop a theoretically-driven measure of online course completion. This research study involved surveying 311 community college faculty who taught at least one online course in the past 2 years. Email addresses of participating faculty were provided by two south Florida community colleges. Each participant was contacted through email, and a link to an Internet survey was given. The survey response rate was 63% (192 out of 303 available questionnaires). Data were analyzed through factor analysis, alpha reliability, and multiple regression. The exploratory factor analysis using principal component analysis with varimax rotation yielded a four-factor solution that accounted for 48.8% of the variance. Consistent with Social Presence theory, the factors with their percent of variance in parentheses were: immediacy (21.2%), technological immediacy (11.0%), online communication and interactivity (10.3%), and intimacy (6.3%). Internal consistency of the four factors was calculated using Cronbach's alpha (1951) with reliability coefficients ranging between .680 and .828. Multiple regression analysis yielded a model that significantly predicted 11% of the variance of the dependent variable, the percentage of student who completed the online course. As indicated in the literature (Johnson & Keil, 2002; Newberry, 2002), Media Richness theory appears to be closely related to Social Presence theory. However, elements from this theory did not emerge in the factor analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Corrigendum European Journal of Human Genetics (2016) 24, 1515; doi:10.1038/ejhg.2016.81 22 Years of predictive testing for Huntington’s disease: the experience of the UK Huntington’s Prediction Consortium Sheharyar S Baig, Mark Strong, Elisabeth Rosser, Nicola V Taverner, Ruth Glew, Zosia Miedzybrodzka, Angus Clarke, David Craufurd, UK Huntington's Disease Prediction Consortium and Oliver W Quarrell Correction to: European Journal of Human Genetics advance online publication, 11 May 2016; doi: 10.1038/ejhg.2016.36 Post online publication the authors realised that they had made an error: The sentence on page 2: 'In the first 5-year period........but this changed significantly in the last 5-year period with 51% positive and 49% negative (χ2=20.6, P<0.0001)' should read: 'In the first 5-year period........but this changed significantly in the last 5-year period with 49% positive and 51% negative (χ2=20.6, P<0.0001)'.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypertrophic cardiomyopathy (HCM) is a cardiovascular disease where the heart muscle is partially thickened and blood flow is - potentially fatally - obstructed. It is one of the leading causes of sudden cardiac death in young people. Electrocardiography (ECG) and Echocardiography (Echo) are the standard tests for identifying HCM and other cardiac abnormalities. The American Heart Association has recommended using a pre-participation questionnaire for young athletes instead of ECG or Echo tests due to considerations of cost and time involved in interpreting the results of these tests by an expert cardiologist. Initially we set out to develop a classifier for automated prediction of young athletes’ heart conditions based on the answers to the questionnaire. Classification results and further in-depth analysis using computational and statistical methods indicated significant shortcomings of the questionnaire in predicting cardiac abnormalities. Automated methods for analyzing ECG signals can help reduce cost and save time in the pre-participation screening process by detecting HCM and other cardiac abnormalities. Therefore, the main goal of this dissertation work is to identify HCM through computational analysis of 12-lead ECG. ECG signals recorded on one or two leads have been analyzed in the past for classifying individual heartbeats into different types of arrhythmia as annotated primarily in the MIT-BIH database. In contrast, we classify complete sequences of 12-lead ECGs to assign patients into two groups: HCM vs. non-HCM. The challenges and issues we address include missing ECG waves in one or more leads and the dimensionality of a large feature-set. We address these by proposing imputation and feature-selection methods. We develop heartbeat-classifiers by employing Random Forests and Support Vector Machines, and propose a method to classify full 12-lead ECGs based on the proportion of heartbeats classified as HCM. The results from our experiments show that the classifiers developed using our methods perform well in identifying HCM. Thus the two contributions of this thesis are the utilization of computational and statistical methods for discovering shortcomings in a current screening procedure and the development of methods to identify HCM through computational analysis of 12-lead ECG signals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In cardiovascular disease the definition and the detection of the ECG parameters related to repolarization dynamics in post MI patients is still a crucial unmet need. In addition, the use of a 3D sensor in the implantable medical devices would be a crucial mean in the assessment or prediction of Heart Failure status, but the inclusion of such feature is limited by hardware and firmware constraints. The aim of this thesis is the definition of a reliable surrogate of the 500 Hz ECG signal to reach the aforementioned objective. To evaluate the worsening of reliability due to sampling frequency reduction on delineation performance, the signals have been consecutively down sampled by a factor 2, 4, 8 thus obtaining the ECG signals sampled at 250, 125 and 62.5 Hz, respectively. The final goal is the feasibility assessment of the detection of the fiducial points in order to translate those parameters into meaningful clinical parameter for Heart Failure prediction, such as T waves intervals heterogeneity and variability of areas under T waves. An experimental setting for data collection on healthy volunteers has been set up at the Bakken Research Center in Maastricht. A 16 – channel ambulatory system, provided by TMSI, has recorded the standard 12 – Leads ECG, two 3D accelerometers and a respiration sensor. The collection platform has been set up by the TMSI property software Polybench, the data analysis of such signals has been performed with Matlab. The main results of this study show that the 125 Hz sampling rate has demonstrated to be a good candidate for a reliable detection of fiducial points. T wave intervals proved to be consistently stable, even at 62.5 Hz. Further studies would be needed to provide a better comparison between sampling at 250 Hz and 125 Hz for areas under the T waves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-07

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Short Term Assessment of Risk and Treatability is a structured judgement tool used to inform risk estimation for multiple adverse outcomes. In research, risk estimates outperform the tool's strength and vulnerability scales for violence prediction. Little is known about what its’component parts contribute to the assignment of risk estimates and how those estimates fare in prediction of non-violent adverse outcomes compared with the structured components. START assessment and outcomes data from a secure mental health service (N=84) was collected. Binomial and multinomial regression analyses determined the contribution of selected elements of the START structured domain and recent adverse risk events to risk estimates and outcomes prediction for violence, self-harm/suicidality, victimisation, and self-neglect. START vulnerabilities and lifetime history of violence, predicted the violence risk estimate; self-harm and victimisation estimates were predicted only by corresponding recent adverse events. Recent adverse events uniquely predicted all corresponding outcomes, with the exception of self-neglect which was predicted by the strength scale. Only for victimisation did the risk estimate outperform prediction based on the START components and recent adverse events. In the absence of recent corresponding risk behaviour, restrictions imposed on the basis of START-informed risk estimates could be unwarranted and may be unethical.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protective factors are neglected in risk assessment in adult psychiatric and criminal justice populations. This review investigated the predictive efficacy of selected tools that assess protective factors. Five databases were searched using comprehensive terms for records up to June 2014, resulting in 17 studies (n = 2,198). Results were combined in a multilevel meta-analysis using the R (R Core Team, R: A Language and Environment for Statistical Computing, Vienna, Austria: R Foundation for Statistical Computing, 2015) metafor package (Viechtbauer, Journal of Statistical Software, 2010, 36, 1). Prediction of outcomes was poor relative to a reference category of violent offending, with the exception of prediction of discharge from secure units. There were no significant differences between the predictive efficacy of risk scales, protective scales, and summary judgments. Protective factor assessment may be clinically useful, but more development is required. Claims that use of these tools is therapeutically beneficial require testing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Career decision-making self-efficacy and the Big Five traits of neuroticism, extraversion, and conscientiousness were examined as predictors of career indecision in a sample of 181 undergraduates. Participants completed an online survey. I predicted that the Big Five traits and career decision-making self-efficacy would (a) interrelate moderately and (b) each relate significantly and moderately to career indecision. In addition, I predicted that career decision-making self-efficacy would partially mediate the relationships between the Big Five traits and career indecision, while the Big Five traits were predicted to moderate the relationship between career decision-making self-efficacy and career indecision. Finally, I predicted that career decision-making self-efficacy would account for a greater amount of unique variance in career indecision than the Big Five traits. All predicted correlations were significant. Career decision-making self-efficacy fully mediated the relationship of Extraversion to career indecision and partially mediated the relationships of Neuroticism and Conscientiousness to career indecision. Conscientiousness was found to moderate the relationship of career decision-making self-efficacy to career indecision such that the negative relation between self-efficacy and career indecision was stronger in the presence of high conscientiousness. This study builds upon existing research on the prediction of career indecision by examining potential mediating and moderating relationships.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2016