992 resultados para EARTH ATMOSPHERE


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long-duration observations of Neptune’s brightness in two visible wavelengths provide a disk-averaged estimate of its atmospheric aerosol. Brightness variations were previously associated with the 11-year solar cycle, through solar-modulated mechanisms linked with either ultra-violet (UV) or galactic cosmic ray (GCR) effects on atmospheric particles. Here we use a recently extended brightness dataset (1972-2014), with physically realistic modelling to show that rather than alternatives, UV and GCR are likely to be modulating Neptune’s atmosphere in combination. The importance of GCR is further supported by the response of Neptune's atmosphere to an intermittent 1.5 to 1.9 year periodicity, which occurred preferentially in GCR (not UV) during the mid-1980s. This periodicity was detected both at Earth, and in GCR measured by Voyager 2, then near Neptune. A similar coincident variability in Neptune’s brightness suggests nucleation onto GCR ions. Both GCR and UV mechanisms may occur more rapidly than the subsequent atmospheric particle transport.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The search for rocky exoplanets plays an important role in our quest for extra-terrestrial life. Here, we discuss the extreme physical properties possible for the first characterised rocky super-Earth, CoRoT-7b (R(pl) = 1.58 +/- 0.10 R(Earth), M(pl) = 6.9 +/- 1.2 M(Earth)). It is extremely close to its star (a = 0.0171 AU = 4.48 R(st)), with its spin and orbital rotation likely synchronised. The comparison of its location in the (M(pl), R(pl)) plane with the predictions of planetary models for different compositions points to an Earth-like composition, even if the error bars of the measured quantities and the partial degeneracy of the models prevent a definitive conclusion. The proximity to its star provides an additional constraint on the model. It implies a high extreme-UV flux and particle wind, and the corresponding efficient erosion of the planetary atmosphere especially for volatile species including water. Consequently, we make the working hypothesis that the planet is rocky with no volatiles in its atmosphere, and derive the physical properties that result. As a consequence, the atmosphere is made of rocky vapours with a very low pressure (P <= 1.5 Pa), no cloud can be sustained, and no thermalisation of the planet is expected. The dayside is very hot (2474 +/- 71 K at the sub-stellar point) while the nightside is very cold (50-75 K). The sub-stellar point is as hot as the tungsten filament of an incandescent bulb, resulting in the melting and distillation of silicate rocks and the formation of a lava ocean. These possible features of CoRoT-7b could be common to many small and hot planets, including the recently discovered Kepler-10b. They define a new class of objects that we propose to name ""Lava-ocean planets"". (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present work is to study the potential short-term atmospheric and biospheric influence of Gamma Ray Bursts on the Earth. We focus in the ultraviolet flash at planet`s surface, which occurs as a result of the retransmission of the gamma radiation through the atmosphere. This would be the only important short-term effect on life. We mostly consider Archean and Proterozoic eons, and for completeness we also comment on the Phanerozoic. Therefore, in our study we consider atmospheres with oxygen levels ranging from 10(-5) to 1 of the present atmospheric level, representing different moments in the oxygen rise history. Ecological consequences and some strategies to estimate their importance are outlined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biogenic aerosols play important roles in atmospheric chemistry physics, the biosphere, climate, and public health. Here, we show that fungi which actively discharge their spores with liquids into the air, in particular actively wet spore discharging Ascomycota (AAM) and actively wet spore discharging Basidiomycota (ABM), are a major source of primary biogenic aerosol particles and components. We present the first estimates for the global average emission rates of fungal spores.

Measurement results and budget calculations based on investigations in Amazonia (Balbina, Brazil, July 2001) indicate that the spores of AAM and ABM may account for a large proportion of coarse particulate matter in tropical rainforest regions during the wet season (0.7–2.3 μg m−3). For the particle diameter range of 1–10 μm, the estimated proportions are ~25% during day-time, ~45% at night, and ~35% on average. For the sugar alcohol mannitol, the budget calculations indicate that it is suitable for use as a molecular tracer for actively wet discharged basidiospores (ABS). ABM emissions seem to account for most of the atmospheric abundance of mannitol (10–68 ng m−3), and can explain the observed diurnal cycle (higher abundance at night). ABM emissions of hexose carbohydrates might also account for a significant proportion of glucose and fructose in air particulate matter (7–49 ng m−3), but the literature-derived ratios are not consistent with the observed diurnal cycle (lower abundance at night). AAM emissions appear to account for a large proportion of potassium in air particulate matter over tropical rainforest regions during the wet season (17–43 ng m−3), and they can also explain the observed diurnal cycle (higher abundance at night). The results of our investigations and budget calculations for tropical rainforest aerosols are consistent with measurements performed at other locations.

Based on the average abundance of mannitol reported for extratropical continental boundary layer air (~25 ng m−3), we have also calculated a value of ~17 Tg yr−1 as a first estimate for the global average emission rate of ABS over land surfaces, which is consistent with the typically observed concentrations of ABS (~10³–104 m−3; ~0.1–1 μg m−3). The global average atmospheric abundance and emission rate of total fungal spores, including wet and dry discharged species, are estimated to be higher by a factor of about three, i.e. 1 μg m−3 and ~50 Tg yr−1. Comparisons with estimated rates of emission and formation of other major types of organic aerosol (~47 Tg yr−1 of anthropogenic primary organic aerosol; 12–70 Tg yr−1 of secondary organic aerosol) indicate that emissions from fungi should be taken into account as a significant global source of organic aerosol. The effects of fungal spores and related chemical components might be particularly important in tropical regions, where both physicochemical processes in the atmosphere and biological activity at the Earth's surface are particularly intense, and where the abundance of fungal spores and related chemical compounds are typically higher than in extratropical regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spores and related chemical compounds from actively spore-discharging Ascomycota (AAM) and actively spore-discharging Basidiomycota (ABM) are primary biogenic components of air particulate matter (characteristic size range 1–10 μm). Measurement results and budget calculations based on investigations in Amazonia (Balbina, Brazil, July 2001) indicate that the forcible discharge of fungal spores may account for a large proportion of coarse air particulate matter in tropical rainforest regions during the wet season. For the particle diameter range of 1–10 μm, the estimated proportions are ~25% during day-time, ~45% at night, and ~35% on average. For the sugar alcohol, mannitol, the budget calculations indicate that it is suitable for use as a molecular tracer for actively discharged basidiospores (ABS), and that the literature-derived emission ratio of about 5 pg per ABS may be taken as a representative average. ABM emissions may account for most of the atmospheric abundance of mannitol, and can explain the observed diurnal cycle (higher abundance at night). ABM emissions of hexose carbohydrates might also account for a significant proportion of glucose and fructose in air particulate matter, but the literature-derived ratios are not consistent with the observed diurnal cycle (lower abundance at night). AAM emissions appear to account for a large proportion of potassium in air particulate matter over tropical rainforest regions during the wet season, and they can also explain the observed diurnal cycle (higher abundance at night). The results of our investigations and budget calculations for tropical rainforest aerosols are consistent with measurements performed at other locations.

Based on the average abundance of mannitol in particulate matter, which is consistent with the above emission ratio and the observed abundance of ABS, we have also calculated a value of ~17 Tg yr−1 as a first estimate for the global average emission rate of ABS over land surfaces. Comparisons with estimated rates of emission and formation of other major types of organic aerosol (~47 Tg yr−1 of anthropogenic primary organic aerosol; 12–70 Tg yr−1 of secondary organic aerosol) indicate that emissions from actively spore-discharging fungi should be taken into account as a significant source of organic aerosol. Their effects might be particularly important in tropical regions, where both physicochemical processes in the atmosphere and biological activity at the Earth's surface are particularly intense, and where the abundance of fungal spores and related chemical compounds are typically higher than in extratropical regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solid compounds of general formula ML(2) . nH(2)O [where M is Mg, Ca, Sr or Ba; L=4 methoxybenzylidenepyruvate (4-MeO-BP); n = 4, 1 or 0] have been synthetized. Thermogravimetry (TG), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC), x-ray diffraction powder patterns and elemental analysis have been used to characterize the compounds. The thermal stability of these compounds as well as that of the decomposition products were studied using Pt or Al2O3 crucibles in an air or a CO2 atmosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work is analyzed the contribution of the Moon on the collisional process of the Earth with asteroids (NEOs). The dynamical system adopted is the restricted four-body problem Sun-Earth-Moon-particle. Using a simple analytical approach one can verify that, the orbit of an object can be significantly affected by the Moon's gravitational field when their relative velocity is smaller than 5 km/s. Therefore, the present work is based on hypothetical asteroids whose velocities relative to Moon are of the order of 1 km/s. In fact, there are several real objects (NEOs) with such velocities at the point they cross the Earth's orbit. The net results obtained indicate that the Moon helps to avoid collisions (2.6%) more than it contributes to extra collisions (0.6%). (C) 2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a semiempirical method to study the production and propagation of atmospheric secondary protons with energy>100 Mev, moving in the vertical direction. The derived production functions are fitted by the least-square method for the only previously published splash (SP) and return (RE) albedos observed data using the same instrument and measurement sites. The closed agreements between the measurement data and the calculations over a wide range of atmospheric depths lead to a possible extension of the method for other latitudes. The spectra of SP and RE intensities versus the geomagnetic cut-off reveal similar behaviour as assumed earlier by the theory for those components in the Earth's magnetic field. © 1993 Società Italiana di Fisica.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The multiferroic behavior with ion modification using rare-earth cations on crystal structures, along with the insulating properties of BiFeO3 (BFO) thin films was investigated using piezoresponse force microscopy. Rare-earth-substituted BFO films with chemical compositions of (Bi 1.00-xRExFe1.00O3 (x=0; 0.15), RE=La and Nd were fabricated on Pt (111)/Ti/SiO2/Si substrates using a chemical solution deposition technique. A crystalline phase of tetragonal BFO was obtained by heat treatment in ambient atmosphere at 500 °C for 2 h. Ion modification using La3+ and Nd3+ cations lowered the leakage current density of the BFO films at room temperature from approximately 10-6 down to 10-8 A/cm2. The observed improved magnetism of the Nd3+ substituted BFO thin films can be related to the plate-like morphology in a nanometer scale. We observed that various types of domain behavior such as 71° and 180° domain switching, and pinned domain formation occurred. The maximum magnetoelectric coefficient in the longitudinal direction was close to 12 V/cm Oe. © 2012 Elsevier Ltd and Techna Group S.r.l.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titan's optical and near-IR spectra result primarily from the scattering of sunlight by haze and its absorption by methane. With a column abundance of 92 km amagat (11 times that of Earth), Titan's atmosphere is optically thick and only similar to 10% of the incident solar radiation reaches the surface, compared to 57% on Earth. Such a formidable atmosphere obstructs investigations of the moon's lower troposphere and surface, which are highly sensitive to the radiative transfer treatment of methane absorption and haze scattering. The absorption and scattering characteristics of Titan's atmosphere have been constrained by the Huygens Probe Descent Imager/Spectral Radiometer (DISR) experiment for conditions at the probe landing site (Tomasko, M.G., Bezard, B., Doose, L., Engel, S., Karkoschka, E. 120084 Planet. Space Sci. 56, 624-247: Tomasko, M.G. et al. [2008b] Planet. Space Sci. 56, 669-707). Cassini's Visual and Infrared Mapping Spectrometer (VIMS) data indicate that the rest of the atmosphere (except for the polar regions) can be understood with small perturbations in the high haze structure determined at the landing site (Penteado, P.F., Griffith, CA., Tomasko, M.G., Engel, S., See, C., Doose, L, Baines, K.H., Brown, R.H., Buratti, B.J., Clark, R., Nicholson, P., Sotin, C. [2010]. Icarus 206, 352-365). However the in situ measurements were analyzed with a doubling and adding radiative transfer calculation that differs considerably from the discrete ordinates codes used to interpret remote data from Cassini and ground-based measurements. In addition, the calibration of the VIMS data with respect to the DISR data has not yet been tested. Here, VIMS data of the probe landing site are analyzed with the DISR radiative transfer method and the faster discrete ordinates radiative transfer calculation; both models are consistent (to within 0.3%) and reproduce the scattering and absorption characteristics derived from in situ measurements. Constraints on the atmospheric opacity at wavelengths outside those measured by DISR, that is from 1.6 to 5.0 mu m, are derived using clouds as diffuse reflectors in order to derive Titan's surface albedo to within a few percent error and cloud altitudes to within 5 km error. VIMS spectra of Titan at 2.6-3.2 mu m indicate not only spectral features due to CH4 and CH3D (Rannou, P., Cours, T., Le Mouelic, S., Rodriguez, S., Sotin, C., Drossart, P., Brown, R. [2010]. Icarus 208, 850-867), but also a fairly uniform absorption of unknown source, equivalent to the effects of a darkening of the haze to a single scattering albedo of 0.63 +/- 0.05. Titan's 4.8 mu m spectrum point to a haze optical depth of 0.2 at that wavelength. Cloud spectra at 2 mu m indicate that the far wings of the Voigt profile extend 460 cm(-1) from methane line centers. This paper releases the doubling and adding radiative transfer code developed by the DISR team, so that future studies of Titan's atmosphere and surface are consistent with the findings by the Huygens Probe. We derive the surface albedo at eight spectral regions of the 8 x 12 km(2) area surrounding the Huygens landing site. Within the 0.4-1.6 mu m spectral region our surface albedos match DISR measurements, indicating that DISR and VIMS measurements are consistently calibrated. These values together with albedos at longer 1.9-5.0 mu m wavelengths, not sampled by DISR, resemble a dark version of the spectrum of Ganymede's icy leading hemisphere. The eight surface albedos of the landing site are consistent with, but not deterministic of, exposed water ice with dark impurities. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The exchange of chemical constituents between ocean and atmosphere provides potentially important feedback mechanisms in the climate system. The aim of this study is to develop and evaluate a chemically coupled global atmosphere-ocean model. For this, an atmosphere-ocean general circulation model with atmospheric chemistry has been expanded to include oceanic biogeochemistry and the process of air-sea gas exchange. The calculation of seawater concentrations in the oceanic biogeochemistry submodel has been expanded from DMS, CO₂

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The time variable Earth’s gravity field provides the information about mass transport within the system Earth, i.e., the relationship of mass transport between atmosphere, oceans, and land hydrology. We recover the low-degree parameters of the time variable gravity field using microwave observations from GPS and GLONASS satellites and from SLR data to five geodetic satellites, namely LAGEOS-1/2, Starlette, Stella, and AJISAI. GPS satellites are particularly sensitive to specific coefficients of the Earth's gravity field, because of the deep 2:1 orbital resonance with Earth rotation (two revolutions of the GPS satellites per sidereal day). The resonant coefficients cause, among other, a “secular” drift (actually periodic variations of very long periods) of the semi-major axes of up to 5.3 m/day of GPS satellites. We processed 10 years of GPS and GLONASS data using the standard orbit models from the Center of Orbit Determination in Europe (CODE) with a simultaneous estimation of the Earth gravity field coefficients and other parameters, e.g., satellite orbit parameters, station coordinates, Earth rotation parameters, troposphere delays, etc. The weekly GNSS gravity solutions up to degree and order 4/4 are compared to the weekly SLR gravity field solutions. The SLR-derived geopotential coefficients are compared to monthly GRACE and CHAMP results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A model is developed to describe transport and loss of methyl bromide (MeBr) in soil following application as a soil fumigant. The model is used to investigate the effect of soil and management factors on MeBr volatilization. Factors studied include depth of injection, soil water content, presence or absence of tarp, depth to downward barrier, and irrigation after injection. Of these factors, the most important was irrigation after injection followed by covering with the tarp, which increased the diffusive resistance of the soil and prevented early loss of MeBr. The model offers an explanation for the apparently contradictory observations of earlier field studies of MeBr volatilization from soils under different conditions. The model was also used to calculate the concentration-time index for various management alternatives, showing that the irrigation application did not make the surface soil more difficult to fumigate, except at very early times. Therefore, irrigation shows promise for reducing fumigant loss while at the same time permitting control of target organisms during fumigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The inception of the Little Ice Age (~1400–1700 AD) is believed to have been driven by an interplay of external forcing and climate system internal variability. While the hemispheric signal seems to have been dominated by solar irradiance and volcanic eruptions, the understanding of mechanisms shaping the climate on a continental scale is less robust. In an ensemble of transient model simulations and a new type of sensitivity experiments with artificial sea ice growth, the authors identify a sea ice–ocean–atmosphere feedback mechanism that amplifies the Little Ice Age cooling in the North Atlantic–European region and produces the temperature pattern suggested by paleoclimatic reconstructions. Initiated by increasing negative forcing, the Arctic sea ice substantially expands at the beginning of the Little Ice Age. The excess of sea ice is exported to the subpolar North Atlantic, where it melts, thereby weakening convection of the ocean. Consequently, northward ocean heat transport is reduced, reinforcing the expansion of the sea ice and the cooling of the Northern Hemisphere. In the Nordic Seas, sea surface height anomalies cause the oceanic recirculation to strengthen at the expense of the warm Barents Sea inflow, thereby further reinforcing sea ice growth. The absent ocean–atmosphere heat flux in the Barents Sea results in an amplified cooling over Northern Europe. The positive nature of this feedback mechanism enables sea ice to remain in an expanded state for decades up to a century, favoring sustained cold periods over Europe such as the Little Ice Age. Support for the feedback mechanism comes from recent proxy reconstructions around the Nordic Seas.