983 resultados para E coli
Resumo:
A resistência aos antibióticos em bactérias Gram-negativas pode ser aumentada pela extrusão de antibióticos através de sistemas de efluxo. Em Escherichia coli, o principal sistema de efluxo é o AcrAB-TolC o qual tem como principal fonte energética a força proto-motriz. Este trabalho pretendeu estudar alguns aspectos essenciais da bioenergética na actividade de efluxo de E. coli usando três estirpes bem caracterizadas genotipica e fenotipicamente. Foi utilizado um método fluorimétrico semi-automático no qual a fluorescência do fluorocromo brometo de etídeo, substrato de bombas de efluxo foi seguida, permitindo a medição em tempo real da actividade de efluxo e acumulação de fluorocromo (inibição do efluxo). A utilização de brometo de etídeo é particularmente vantajosa pois emite baixa fluorescência no exterior da célula bacteriana tornando-se extremamente fluorescente no seu interior. Este método é uma nova aplicação do termociclador em tempo real RotorGeneTM 3000 que permite o cálculo da cinética de transporte reflectindo o balanço entre acumulação de substrato por difusão passiva através da membrana e a sua extrusão/efluxo, proporcionando uma detecção rápida e económica de inibidores de efluxo. Os resultados obtidos mostram, para todas as estirpes, que a GLU e o pH afectam a acumulação e o efluxo do brometo de etídeo. De todos os inibidores de vias biossintéticas testados, o ortovanadato de sódio, foi o que demonstrou maior actividade inibitória, a qual é revertida na presença de GLU. Em conclusão, este estudo mostra que a actividade de efluxo de E. coli depende não só da fosforilação oxidativa por via da força proto-motriz mas também da energia proveniente da hidrólise de ATP pelas ATPases. O ortovanadato de sódio tem potencial para ser um novo inibidor de bombas de efluxo de largo espectro. A tecnologia utilizada neste trabalho demonstrou ser apropriada para a caracterização bioenergética da actividade de bombas de efluxo e permite a selecção de novos inibidores de bombas de efluxo em bactérias.
Resumo:
The mannose-resistant hemagglutinating factor (HAF) was extracted and purified from a diffuse adherent Escherichia coli (DAEC) strain belonging to the classic enteropathogenic E. coli (EPEC) serotype (0128). The molecular weight of HAF was estimated to be 18 KDa by SDS-PAGE and 66 KDa by Sephadex G100, suggesting that the native form of HAF consists of 3-4 monomeric HAF. Gold immunolabeling with specific HAF antiserum revealed that the HAF is not a rigid structure like fimbriae on the bacterial surface. The immunofluorescence test using purified HAF on HeLa cells, in addition to the fact that the HAF is distributed among serotypes of EPEC, suggests that HAF is a possible adhesive factor of DAEC strains
Resumo:
PLOS ONE, 4(8):ARTe6820
Resumo:
Diarrheagenics Escherichia coli are the major agents involved in diarrheal disease in developing countries. The aim of this study was to evaluate the time of appearance of the first asymptomatic infection by the different categories of diarrheagenic E. coli in 44 children since their birth and during the first 20 months of their lives. In all of the children studied, we detected at least one category of diarrheagenic E. coli through the 20 months of the study. 510 diarrheagenic E. coli (33.5%) were obtained from the 1,524 samples collected from the 44 children during the time of the study (31.4% EAggEC, 28.8% EPEC, 27.1% DAEC, and 12.7% ETEC). Neither EHEC nor EIEC were identified. The median age for diarrheagenic E. coli colonization was 7.5 months. The mean weaning period was 12.8 months and the mean age for introduction of mixed feeding (breast fed supplemented) was 3.8 months. A significantly lower incidence of diarrheal disease and asymptomatic infections was recorded among the exclusively breast-fed rather than in the supplemented and non breast-fed infants. For ETEC, EPEC and EAggEC the introduction of weaning foods and complete termination of breast-feeding were associated with an increase of asymptomatic infections.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Biotecnologia
Resumo:
Dissertation presented to obtain a Master degree in Biotechnology
Resumo:
The aim of the present study was to determine biological characteristics such as expression of fimbriae, Congo red binding, production of hemolysin and aerobactin, adhesion to HeLa and uroepithelial cells and invasion of HeLa cells by Escherichia coli isolates obtained from patients showing clinical signs of urinary tract infection (UTI). Also, the presence of genes (apa, afa, spa) for fimbria expression and cytotoxic necrotizing factors (CNF1, CNF2) was assayed using specific primers in PCR. The data obtained were compared with the clonal relationships obtained by analysis of multilocus enzyme electrophoresis (MLEE), restriction fragment length polymorphism (RFLP) of the rDNA (ribotyping) and enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR). All isolates but one presented a combination of at least two of the characteristics studied, a fact suggesting the presence of pathogenicity islands (PAIs). Diffuse adherence type to HeLa cells was observed to occur in most of the strains, but adhesion to uroepithelial cells seems to be a more reliable test to verify pathogenicity. Although four strains seemed to be able to invade HeLa cells when assayed by light microscopy, electron microscopy studies demonstrated that these strains were not invasive. MLEE, RFLP and ERIC-PCR were able to group the isolates differently into main clusters that were not correlated with the presence of pathogenic traits.
Resumo:
E. coli was submitted to a 5G electromagnetic field generated by a alternate 60 Hz voltage source. The differences on growth and glucose consume in control and exposed groups were evaluated using the non-parametric Mann-Whitney U-test. There was a significant difference in glucose consume and growth in E. coli after 8 hours of exposition to electromagnetic field. It can be concluded that electromagnetic field had a positive effect in consume of glucose and growth of E. coli. The cause of these results can be explained by an increasing of glucose entrance through membrane due to the stimulated transport system via Facility Diffusion or cyclotron resonance. The growth can be caused by shortening of lag phase and excitement of log phase.
Resumo:
A label-free DNA aptamer-based impedance biosensor for the detection of E. coli outer membrane proteins (OMPs) was developed. Two single stranded DNA sequences were tested as recognition elements and compared. The aptamer capture probes were immobilized, with and without 6-mercapto-1-hexanol (MCH) on a gold electrode. Each step of the modification process was characterized by Faradaic impedance spectroscopy (FIS). A linear relationship between the electron-transfer resistance (Ret) and E. coli OMPs concentration was demonstrated in a dynamic detection range of 1 × 10−7–2 × 10−6 M. Moreover, the aptasensor showed selectivity despite the presence of other possible water contaminates and could be regenerated under low pH condition. The developed biosensor shows great potential to be incorporated in a biochip and used for in situ detection of E. coli OMPs in water samples.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
The aim of the study was to determine the occurrence of virulence genes expressing fimbriae, production of hemolysin, colicin and aerobactin among a hundred Escherichia coli isolates obtained from in-and outpatients of a tertiary-care teaching hospital, between July and August 2000, showing clinical and laboratory signs of urinary tract infection (UTI). The presence of genes (pap, afa, sfa) for fimbriae expression was assayed using specific primers in a polymerase chain reaction. Among the isolates studied, the prevalence of the virulence factors was 96.0%, 76.0%, 24.0%, for hemolysin, aerobactin and colicin, respectively; the prevalence of genes coding for fimbrial adhesive systems was 32.0%, 19.0% and 11.0% for pap, sfa and afa respectively. The strains isolated from the outpatients displayed a greater number of virulence factors compared to those from hospitalized subjects, emphasizing the difference between these two kinds of patients.
Resumo:
The genus Campylobacter is of great importance to public health because it includes several species that may cause diarrhea. These species may be found in water, food and in the intestinal tract of chickens. This study investigated the presence of Campylobacter jejuni and Campylobacter coli in chicken abattoirs in São Paulo State, Brazil. A total of 288 samples of feces, feathers, scald water, evisceration water, chiller water, and the rinse water of eviscerated, not eviscerated and chilled carcasses were collected in six chicken abattoirs. Polymerase Chain Reaction (PCR) was performed in Campylobacter spp.-positive isolates using the gene HIP, specific for hippuricase enzyme from Campylobacter jejuni and aspartokinase gene, specific to detect Campylobacter coli. The percentage of positive isolates of Campylobacter jejuni was 4.9% (14/288). Isolation was greater in feces samples (22%, 8/36). One sample was positive for the species C. coli. In conclusion, the results indicate that it is necessary to improve quality control for Campylobacter spp. in chicken abattoirs.
Resumo:
Adhesins (P-fimbriae, S-fimbriae, type 1 fimbriae and afimbrial adhesin), toxins (α-hemolysin and cytotoxic necrotizing factor type 1), iron acquisition systems (aerobactin) and host defense avoidance mechanisms (capsule or lipopolysaccharide) have been shown to be prevalent in Escherichia coli strains associated with urinary tract infections. In this work, 162 Uropathogenic Escherichia coli (UPEC) strains from patients with cystitis were genotypically characterized by polymerase chain reaction (PCR) assay. We developed three multiplex PCR assays for virulence-related genes papC, papE/F, papG alleles, fimH, sfa/foc, afaE, hly, cnf-1, usp, cdtB, iucD, and kpsMTII, all of them previously identified in UPEC strains. The PCR assay results identified 158 fimH (97.5%), 86 kpsMTII (53.1%), 53 papC/papEF/papG (32.7%), 45 sfa (27.8%), 42 iucD (25.9%), 41 hly (25.3%), 36 usp (22.2%), 30 cnf-1(18.5%) and 10 afa (6.2%) strains. No strain was positive for cdtB. In this work, we also demonstrated that adhesins may be multiple within a single strain and that several virulence genes can occur combined in association.
Resumo:
A case-control study, involving patients with positive blood cultures for Klebsiella pneumoniae (KP) or Escherichia coli (EC) EC and controls with positive blood cultures for non-ESBL-KP or EC, was performed to assess risk factors for extended-spectrum-β-lactamase (ESBL) production from nosocomial bloodstream infections (BSIs). Mortality among patients with BSIs was also assessed. The study included 145 patients (81, 59.5% with K. pneumoniae and 64, 44.1% with E. coli BSI); 51 (35.2%) isolates were ESBL producers and 94 (64.8%) nonproducers. Forty-five (55.6%) K. pneumoniae isolates were ESBL producers, while only six (9.4%) E. coli isolates produced the enzyme. Multivariate analysis showed that recent exposure to piperacillin-tazobactam (adjusted Odds Ratio [aOR] 6.2; 95%CI 1.1-34.7) was a risk factor for ESBL BSI. K. pneumoniae was significantly more likely to be an ESBL-producing isolate than E. coli (aOR 6.7; 95%CI 2.3-20.2). No cephalosporin class was independently associated with ESBLs BSI; however, in a secondary model considering all oxymino-cephalosporins as a single variable, a significant association was demonstrated (aOR 3.7; 95%CI 1.3-10.8). Overall 60-day mortality was significantly higher among ESBL-producing organisms. The finding that piperacillin-tazobactam use is a risk factor for ESBL-production in KP or EC BSIs requires attention, since this drug can be recommended to limit the use of third-generation cephalosporins.
Resumo:
A variety of foods and environmental sources harbor bacteria that are resistant to one or more antimicrobial drugs used in medicine and agriculture. Antibiotic resistance in Escherichia coli is of particular concern because it is the most common Gram-negative pathogen in humans. Hence this study was conducted to determine the antibiotic sensitivity pattern of E. coli isolated from different types of food items collected randomly from twelve localities of Hyderabad, India. A total of 150 samples comprising; vegetable salad, raw egg-surface, raw chicken, unpasteurized milk, and raw meat were processed microbiologically to isolate E. coli and to study their antibiotic susceptibility pattern by the Kirby-Bauer method. The highest percentages of drug resistance in isolates of E. coli were detected from raw chicken (23.3%) followed by vegetable salad (20%), raw meat (13.3%), raw egg-surface (10%) and unpasteurized milk (6.7%). The overall incidence of drug resistant E. coli was 14.7%. A total of six (4%) Extended Spectrum β-Lactamase (ESBL) producers were detected, two each from vegetable salads and raw chicken, and one each from raw egg-surface and raw meat. Multidrug resistant strains of E. coli are a matter of concern as resistance genes are easily transferable to other strains. Pathogen cycling through food is very common and might pose a potential health risk to the consumer. Therefore, in order to avoid this, good hygienic practices are necessary in the abattoirs to prevent contamination of cattle and poultry products with intestinal content as well as forbidding the use of untreated sewage in irrigating vegetables.