994 resultados para Dynamical Models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The two main objectives of Bayesian inference are to estimate parameters and states. In this thesis, we are interested in how this can be done in the framework of state-space models when there is a complete or partial lack of knowledge of the initial state of a continuous nonlinear dynamical system. In literature, similar problems have been referred to as diffuse initialization problems. This is achieved first by extending the previously developed diffuse initialization Kalman filtering techniques for discrete systems to continuous systems. The second objective is to estimate parameters using MCMC methods with a likelihood function obtained from the diffuse filtering. These methods are tried on the data collected from the 1995 Ebola outbreak in Kikwit, DRC in order to estimate the parameters of the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Auf dem Gebiet der Strukturdynamik sind computergestützte Modellvalidierungstechniken inzwischen weit verbreitet. Dabei werden experimentelle Modaldaten, um ein numerisches Modell für weitere Analysen zu korrigieren. Gleichwohl repräsentiert das validierte Modell nur das dynamische Verhalten der getesteten Struktur. In der Realität gibt es wiederum viele Faktoren, die zwangsläufig zu variierenden Ergebnissen von Modaltests führen werden: Sich verändernde Umgebungsbedingungen während eines Tests, leicht unterschiedliche Testaufbauten, ein Test an einer nominell gleichen aber anderen Struktur (z.B. aus der Serienfertigung), etc. Damit eine stochastische Simulation durchgeführt werden kann, muss eine Reihe von Annahmen für die verwendeten Zufallsvariablengetroffen werden. Folglich bedarf es einer inversen Methode, die es ermöglicht ein stochastisches Modell aus experimentellen Modaldaten zu identifizieren. Die Arbeit beschreibt die Entwicklung eines parameter-basierten Ansatzes, um stochastische Simulationsmodelle auf dem Gebiet der Strukturdynamik zu identifizieren. Die entwickelte Methode beruht auf Sensitivitäten erster Ordnung, mit denen Parametermittelwerte und Kovarianzen des numerischen Modells aus stochastischen experimentellen Modaldaten bestimmt werden können.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an application of birth-and-death processes on configuration spaces to a generalized mutation4 selection balance model. The model describes the aging of population as a process of accumulation of mu5 tations in a genotype. A rigorous treatment demands that mutations correspond to points in abstract spaces. 6 Our model describes an infinite-population, infinite-sites model in continuum. The dynamical equation which 7 describes the system, is of Kimura-Maruyama type. The problem can be posed in terms of evolution of states 8 (differential equation) or, equivalently, represented in terms of Feynman-Kac formula. The questions of interest 9 are the existence of a solution, its asymptotic behavior, and properties of the limiting state. In the non-epistatic 10 case the problem was posed and solved in [Steinsaltz D., Evans S.N., Wachter K.W., Adv. Appl. Math., 2005, 11 35(1)]. In our model we consider a topological space X as the space of positions of mutations and the influence of epistatic potentials

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate seasonal forecasts rely on the presence of low frequency, predictable signals in the climate system which have a sufficiently well understood and significant impact on the atmospheric circulation. In the Northern European region, signals associated with seasonal scale variability such as ENSO, North Atlantic SST anomalies and the North Atlantic Oscillation have not yet proven sufficient to enable satisfactorily skilful dynamical seasonal forecasts. The winter-time circulations of the stratosphere and troposphere are highly coupled. It is therefore possible that additional seasonal forecasting skill may be gained by including a realistic stratosphere in models. In this study we assess the ability of five seasonal forecasting models to simulate the Northern Hemisphere extra-tropical winter-time stratospheric circulation. Our results show that all of the models have a polar night jet which is too weak and displaced southward compared to re-analysis data. It is shown that the models underestimate the number, magnitude and duration of periods of anomalous stratospheric circulation. Despite the poor representation of the general circulation of the stratosphere, the results indicate that there may be a detectable tropospheric response following anomalous circulation events in the stratosphere. However, the models fail to exhibit any predictability in their forecasts. These results highlight some of the deficiencies of current seasonal forecasting models with a poorly resolved stratosphere. The combination of these results with other recent studies which show a tropospheric response to stratospheric variability, demonstrates a real prospect for improving the skill of seasonal forecasts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current global atmospheric models fail to simulate well organised tropical phenomena in which convection interacts with dynamics and physics. A new methodology to identify convectively coupled equatorial waves, developed by NCAS-Climate, has been applied to output from the two latest models of the Met Office/Hadley Centre which have fundamental differences in dynamical formulation. Variability, horizontal and vertical structures, and propagation characteristics of tropical convection and equatorial waves, along with their coupled behaviour in the models are examined and evaluated against a previous comprehensive study of observations. It is shown that, in general, the models perform well for equatorial waves coupled with off-equatorial convection. However they perform poorly for waves coupled with equatorial convection. The vertical structure of the simulated wave is not conducive to energy conversion/growth and does not support the correct physical-dynamical coupling that occurs in the real world. The following figure shows an example of the Kelvin wave coupled with equatorial convection. It shows that the models fail to simulate a key feature of convectively coupled Kelvin wave in observations, namely near surface anomalous equatorial zonal winds together with intensified equatorial convection and westerly winds in phase with the convection. The models are also not able to capture the observed vertical tilt structure and the vertical propagation of the Kelvin wave into the lower stratosphere as well as the secondary peak in the mid-troposphere, particularly in HadAM3. These results can be used to provide a test-bed for experimentation to improve the coupling of physics and dynamics in climate and weather models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accuracy and mesh generation are key issues for the high-resolution hydrodynamic modelling of the whole Great Barrier Reef. Our objective is to generate suitable unstructured grids that can resolve topological and dynamical features like tidal jets and recirculation eddies in the wake of islands. A new strategy is suggested to refine the mesh in areas of interest taking into account the bathymetric field and an approximated distance to islands and reefs. Such a distance is obtained by solving an elliptic differential operator, with specific boundary conditions. Meshes produced illustrate both the validity and the efficiency of the adaptive strategy. Selection of refinement and geometrical parameters is discussed. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate science is coming under increasing pressure to deliver projections of future climate change at spatial scales as small as a few kilometres for use in impacts studies. But is our understanding and modelling of the climate system advanced enough to offer such predictions? Here we focus on the Atlantic–European sector, and on the effects of greenhouse gas forcing on the atmospheric and, to a lesser extent, oceanic circulations. We review the dynamical processes which shape European climate and then consider how each of these leads to uncertainty in the future climate. European climate is unique in many regards, and as such it poses a unique challenge for climate prediction. Future European climate must be considered particularly uncertain because (i) the spread between the predictions of current climate models is still considerable and (ii) Europe is particularly strongly affected by several processes which are known to be poorly represented in current models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To test the effectiveness of stochastic single-chain models in describing the dynamics of entangled polymers, we systematically compare one such model; the slip-spring model; to a multichain model solved using stochastic molecular dynamics(MD) simulations (the Kremer-Grest model). The comparison involves investigating if the single-chain model can adequately describe both a microscopic dynamical and a macroscopic rheological quantity for a range of chain lengths. Choosing a particular chain length in the slip-spring model, the parameter values that best reproduce the mean-square displacement of a group of monomers is determined by fitting toMDdata. Using the same set of parameters we then test if the predictions of the mean-square displacements for other chain lengths agree with the MD calculations. We followed this by a comparison of the time dependent stress relaxation moduli obtained from the two models for a range of chain lengths. After identifying a limitation of the original slip-spring model in describing the static structure of the polymer chain as seen in MD, we remedy this by introducing a pairwise repulsive potential between the monomers in the chains. Poor agreement of the mean-square monomer displacements at short times can be rectified by the use of generalized Langevin equations for the dynamics and resulted in significantly improved agreement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of variation of the water model on the temperature dependence of protein and hydration water dynamics is examined by performing molecular dynamics simulations of myoglobin with the TIP3P, TIP4P, and TIP5P water models and the CHARMM protein force field at temperatures between 20 and 300 K. The atomic mean-square displacements, solvent reorientational relaxation times, pair angular correlations between surface water molecules, and time-averaged structures of the protein are all found to be similar, and the protein dynamical transition is described almost indistinguishably for the three water potentials. The results provide evidence that for some purposes changing the water model in protein simulations without a loss of accuracy may be possible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several studies using ocean–atmosphere general circulation models (GCMs) suggest that the atmospheric component plays a dominant role in the modelled El Niño-Southern Oscillation (ENSO). To help elucidate these findings, the two main atmosphere feedbacks relevant to ENSO, the Bjerknes positive feedback (μ) and the heat flux negative feedback (α), are here analysed in nine AMIP runs of the CMIP3 multimodel dataset. We find that these models generally have improved feedbacks compared to the coupled runs which were analysed in part I of this study. The Bjerknes feedback, μ, is increased in most AMIP runs compared to the coupled run counterparts, and exhibits both positive and negative biases with respect to ERA40. As in the coupled runs, the shortwave and latent heat flux feedbacks are the two dominant components of α in the AMIP runs. We investigate the mechanisms behind these two important feedbacks, in particular focusing on the strong 1997–1998 El Niño. Biases in the shortwave flux feedback, α SW, are the main source of model uncertainty in α. Most models do not successfully represent the negative αSW in the East Pacific, primarily due to an overly strong low-cloud positive feedback in the far eastern Pacific. Biases in the cloud response to dynamical changes dominate the modelled α SW biases, though errors in the large-scale circulation response to sea surface temperature (SST) forcing also play a role. Analysis of the cloud radiative forcing in the East Pacific reveals model biases in low cloud amount and optical thickness which may affect α SW. We further show that the negative latent heat flux feedback, α LH, exhibits less diversity than α SW and is primarily driven by variations in the near-surface specific humidity difference. However, biases in both the near-surface wind speed and humidity response to SST forcing can explain the inter-model αLH differences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An evaluation is undertaken of the statistics of daily precipitation as simulated by five regional climate models using comprehensive observations in the region of the European Alps. Four limited area models and one variable-resolution global model are considered, all with a grid spacing of 50 km. The 15-year integrations were forced from reanalyses and observed sea surface temperature and sea ice (global model from sea surface only). The observational reference is based on 6400 rain gauge records (10–50 stations per grid box). Evaluation statistics encompass mean precipitation, wet-day frequency, precipitation intensity, and quantiles of the frequency distribution. For mean precipitation, the models reproduce the characteristics of the annual cycle and the spatial distribution. The domain mean bias varies between −23% and +3% in winter and between −27% and −5% in summer. Larger errors are found for other statistics. In summer, all models underestimate precipitation intensity (by 16–42%) and there is a too low frequency of heavy events. This bias reflects too dry summer mean conditions in three of the models, while it is partly compensated by too many low-intensity events in the other two models. Similar intermodel differences are found for other European subregions. Interestingly, the model errors are very similar between the two models with the same dynamical core (but different parameterizations) and they differ considerably between the two models with similar parameterizations (but different dynamics). Despite considerable biases, the models reproduce prominent mesoscale features of heavy precipitation, which is a promising result for their use in climate change downscaling over complex topography.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A precipitation downscaling method is presented using precipitation from a general circulation model (GCM) as predictor. The method extends a previous method from monthly to daily temporal resolution. The simplest form of the method corrects for biases in wet-day frequency and intensity. A more sophisticated variant also takes account of flow-dependent biases in the GCM. The method is flexible and simple to implement. It is proposed here as a correction of GCM output for applications where sophisticated methods are not available, or as a benchmark for the evaluation of other downscaling methods. Applied to output from reanalyses (ECMWF, NCEP) in the region of the European Alps, the method is capable of reducing large biases in the precipitation frequency distribution, even for high quantiles. The two variants exhibit similar performances, but the ideal choice of method can depend on the GCM/reanalysis and it is recommended to test the methods in each case. Limitations of the method are found in small areas with unresolved topographic detail that influence higher-order statistics (e.g. high quantiles). When used as benchmark for three regional climate models (RCMs), the corrected reanalysis and the RCMs perform similarly in many regions, but the added value of the latter is evident for high quantiles in some small regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate decadal climate predictions could be used to inform adaptation actions to a changing climate. The skill of such predictions from initialised dynamical global climate models (GCMs) may be assessed by comparing with predictions from statistical models which are based solely on historical observations. This paper presents two benchmark statistical models for predicting both the radiatively forced trend and internal variability of annual mean sea surface temperatures (SSTs) on a decadal timescale based on the gridded observation data set HadISST. For both statistical models, the trend related to radiative forcing is modelled using a linear regression of SST time series at each grid box on the time series of equivalent global mean atmospheric CO2 concentration. The residual internal variability is then modelled by (1) a first-order autoregressive model (AR1) and (2) a constructed analogue model (CA). From the verification of 46 retrospective forecasts with start years from 1960 to 2005, the correlation coefficient for anomaly forecasts using trend with AR1 is greater than 0.7 over parts of extra-tropical North Atlantic, the Indian Ocean and western Pacific. This is primarily related to the prediction of the forced trend. More importantly, both CA and AR1 give skillful predictions of the internal variability of SSTs in the subpolar gyre region over the far North Atlantic for lead time of 2 to 5 years, with correlation coefficients greater than 0.5. For the subpolar gyre and parts of the South Atlantic, CA is superior to AR1 for lead time of 6 to 9 years. These statistical forecasts are also compared with ensemble mean retrospective forecasts by DePreSys, an initialised GCM. DePreSys is found to outperform the statistical models over large parts of North Atlantic for lead times of 2 to 5 years and 6 to 9 years, however trend with AR1 is generally superior to DePreSys in the North Atlantic Current region, while trend with CA is superior to DePreSys in parts of South Atlantic for lead time of 6 to 9 years. These findings encourage further development of benchmark statistical decadal prediction models, and methods to combine different predictions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Logistic models are studied as a tool to convert dynamical forecast information (deterministic and ensemble) into probability forecasts. A logistic model is obtained by setting the logarithmic odds ratio equal to a linear combination of the inputs. As with any statistical model, logistic models will suffer from overfitting if the number of inputs is comparable to the number of forecast instances. Computational approaches to avoid overfitting by regularization are discussed, and efficient techniques for model assessment and selection are presented. A logit version of the lasso (originally a linear regression technique), is discussed. In lasso models, less important inputs are identified and the corresponding coefficient is set to zero, providing an efficient and automatic model reduction procedure. For the same reason, lasso models are particularly appealing for diagnostic purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several methods are examined which allow to produce forecasts for time series in the form of probability assignments. The necessary concepts are presented, addressing questions such as how to assess the performance of a probabilistic forecast. A particular class of models, cluster weighted models (CWMs), is given particular attention. CWMs, originally proposed for deterministic forecasts, can be employed for probabilistic forecasting with little modification. Two examples are presented. The first involves estimating the state of (numerically simulated) dynamical systems from noise corrupted measurements, a problem also known as filtering. There is an optimal solution to this problem, called the optimal filter, to which the considered time series models are compared. (The optimal filter requires the dynamical equations to be known.) In the second example, we aim at forecasting the chaotic oscillations of an experimental bronze spring system. Both examples demonstrate that the considered time series models, and especially the CWMs, provide useful probabilistic information about the underlying dynamical relations. In particular, they provide more than just an approximation to the conditional mean.