914 resultados para Dynamic increasing factor (DIF)
Resumo:
Organizational learning has been studied as a key factor in firm performance and internationalization. Moving beyond the past emphasis on market learning, we develop a more complete explanation of learning, its relationship to innovation, and their joint effect on early internationalization. We theorize that, driven by the founders’ international vision, early internationalizing firms employ a dual subsystem of dynamic capabilities: a market subsystem consisting of market-focused learning capability and marketing capability, and a socio-technical subsystem comprised of network learning capability and internally focused learning capability. We argue that innovation mediates the proposed relationship between the dynamic capability structure and early internationalization. We conduct case studies to develop the conceptual framework and test it in a field survey of early internationalizing firms from Australia and the United States. Our findings indicate a complex interplay of capabilities driving innovation and early internationalization. We provide theoretical and practical implications and offer insights for future research.
Resumo:
We have applied X-ray and neutron small-angle scattering techniques (SAXS, SANS, and USANS) to study the interaction between fluids and porous media in the particular case of subcritical CO2 sorption in coal. These techniques are demonstrated to give unique, pore-size-specific insights into the kinetics of CO2 sorption in a wide range of coal pores (nano to meso) and to provide data that may be used to determine the density of the sorbed CO2. We observed densification of the adsorbed CO2 by a factor up to five compared to the free fluid at the same (p, T) conditions. Our results indicate that details of CO2 sorption into coal pores differ greatly between different coals and depend on the amount of mineral matter dispersed in the coal matrix: a purely organic matrix absorbs more CO2 per unit volume than one containing mineral matter, but mineral matter markedly accelerates the sorption kinetics. Small pores are filled preferentially by the invading CO2 fluid and the apparent diffusion coefficients have been estimated to vary in the range from 5 × 10-7 cm2/min to more than 10-4 cm2/min, depending on the CO2 pressure and location on the sample.
Resumo:
Mutations in the genes encoding for either the biosynthetic or transcriptional regulation of the anthocyanin pathway have been linked to color phenotypes. Generally, this is a loss of function resulting in a reduction or a change in the distribution of anthocyanin. Here, we describe a rearrangement in the upstream regulatory region of the gene encoding an apple (Malus x domestica) anthocyanin-regulating transcription factor, MYB10. We show that this modification is responsible for increasing the level of anthocyanin throughout the plant to produce a striking phenotype that includes red foliage and red fruit flesh. This rearrangement is a series of multiple repeats, forming a minisatellite-like structure that comprises five direct tandem repeats of a 23-bp sequence. This MYB10 rearrangement is present in all the red foliage apple varieties and species tested but in none of the white fleshed varieties. Transient assays demonstrated that the 23-bp sequence motif is a target of the MYB10 protein itself, and the number of repeat units correlates with an increase in transactivation by MYB10 protein. We show that the repeat motif is capable of binding MYB10 protein in electrophoretic mobility shift assays. Taken together, these results indicate that an allelic rearrangement in the promoter of MYB10 has generated an autoregulatory locus, and this autoregulation is sufficient to account for the increase in MYB10 transcript levels and subsequent ectopic accumulation of anthocyanins throughout the plant.
Resumo:
Epithelial-to-mesenchymal transition (EMT) increases cell migration and invasion, and facilitates metastasis in multiple carcinoma types, but belies epithelial similarities between primary and secondary tumors. This study addresses the importance of mesenchymal-to-epithelial transition (MET) in the formation of clinically significant metastasis. The previously described bladder carcinoma TSU-Pr1 (T24) progression series of cell lines selected in vivo for increasing metastatic ability following systemic seeding was used in this study. It was found that the more metastatic sublines had acquired epithelial characteristics. Epithelial and mesenchymal phenotypes were confirmed in the TSU-Pr1 series by cytoskeletal and morphologic analysis, and by performance in a panel of in vitro assays. Metastatic ability was examined following inoculation at various sites. Epithelial characteristics associated with dramatically increased bone and soft tissue colonization after intracardiac or intratibial injection. In contrast, the more epithelial sublines showed decreased lung metastases following orthotopic inoculation, supporting the concept that EMT is important for the escape of tumor cells from the primary tumor. We confirmed the overexpression of the IIIc subtype of multiple fibroblast growth factor receptors (FGFR) through the TSU-Pr1 series, and targeted abrogation of FGFR2IIIc reversed the MET and associated functionality in this system and increased survival following in vivo inoculation in severe combined immunodeficient mice. This model is the first to specifically model steps of the latter part of the metastatic cascade in isogenic cell lines, and confirms the suspected role of MET in secondary tumor growth.
Resumo:
Fibroblast growth factors (FGFs) are potent mitogens, morphogens, and inducers of angiogenesis, and FGF signaling governs the genesis of diverse tissues and organs from the earliest stages. With such fundamental embryonic and homeostatic roles, it follows that aberrant FGF signaling underlies a variety of diseases. Pathological modifications to FGF expression are known to cause salivary gland aplasia and autosomal dominant hypophosphatemic rickets, while mutations in FGF receptors (FGFRs) result in a range of skeletal dysplasias. Anomalous FGF signaling is also associated with cancer development and progression. Examples include the overexpression of FGF2 and FGF6 in prostate cancer, and FGF8 overexpression in breast and prostate cancers. Alterations in FGF signaling regulators also impact tumorigenesis, which is exemplified by the down-regulation of Sprouty 1, a negative regulator of FGF signaling, in prostate cancer. In addition, several FGFRs are mutated in human cancers (including FGFR2 in gastric cancer and FGFR3 in bladder cancer). We recently identified intriguing alterations in the FGF pathway in a novel model of bladder carcinoma that consists of a parental cell line (TSU-Pr1/T24) and two sublines with increasing metastatic potential (TSU-Pr1-B1 and TSU-Pr1-B2), which were derived successively through in vivo cycling. It was found that the increasingly metastatic sublines (TSU-Pr1-B1 and TSU-Pr1-B2) had undergone a mesenchymal to epithelial transition. FGFR2IIIc expression, which is normally expressed in mesenchymal cells, was increased in the epithelial-like TSU-Pr1-B1 and TSU-Pr1-B2 sublines and FGFR2 knock-down was associated with the reversion of cells from an epithelial to a mesenchymal phenotype. These observations suggest that modified FGF pathway signaling should be considered when studying other cancer types.
Resumo:
Epithelial-to-mesenchymal transition (EMT) processes endow epithelial cells with enhanced migratory/invasive properties and are therefore likely to contribute to tumor invasion and metastatic spread. Because of the difficulty in following EMT processes in human tumors, we have developed and characterized an animal model with transplantable human breast tumor cells (MDA-MB-468) uniquely showing spontaneous EMT events to occur. Using vimentin as a marker of EMT, heterogeneity was revealed in the primary MDA-MB-468 xenografts with vimentin-negative and vimentin-positive areas, as also observed on clinical human invasive breast tumor specimens. Reverse transcriptase-PCR after microdissection of these populations from the xenografts revealed EMT traits in the vimentin-positive zones characterized by enhanced 'mesenchymal gene' expression (Snail, Slug and fibroblast-specific protein-1) and diminished expression of epithelial molecules (E-cadherin, ZO-3 and JAM-A). Circulating tumor cells (CTCs) were detected in the blood as soon as 8 days after s.c. injection, and lung metastases developed in all animals injected as examined by in vivo imaging analyses and histology. High levels of vimentin RNA were detected in CTCs by reverse transcriptase-quantitative PCR as well as, to a lesser extent, Snail and Slug RNA. Von Willebrand Factor/vimentin double immunostainings further showed that tumor cells in vascular tumoral emboli all expressed vimentin. Tumoral emboli in the lungs also expressed vimentin whereas macrometastases displayed heterogenous vimentin expression, as seen in the primary xenografts. In conclusion, our data uniquely demonstrate in an in vivo context that EMT occurs in the primary tumors, and associates with an enhanced ability to intravasate and generate CTCs. They further suggest that mesenchymal-to-epithelial phenomena occur in secondary organs, facilitating the metastatic growth.
Resumo:
It is demonstrated that a magnetic field has a profound effect on the length of a single-wall carbon nanotube (SWCNT) synthesized in the arc discharge. The average length of SWCNT increases by a factor of 2 in discharge with magnetic field as compared with the discharge without magnetic field, and the yield of long nanotubes with lengths above 5 μm also increases. A model of SWCNT growth on metal catalyst in arc plasma was developed. Monte-Carlo simulations confirm that the increase of the plasma density in the magnetic field leads to an increase in the nanotube growth rate and thus leads to longer nanotubes.
Resumo:
Cleavage and polyadenylation factor (CPF) is a multi‐protein complex that functions in pre‐mRNA 3′‐end formation and in the RNA polymerase II (RNAP II) transcription cycle. Ydh1p/Cft2p is an essential component of CPF but its precise role in 3′‐end processing remained unclear. We found that mutations in YDH1 inhibited both the cleavage and the polyadenylation steps of the 3′‐end formation reaction in vitro. Recently, we demonstrated that an important function of CPF lies in the recognition of poly(A) site sequences and RNA binding analyses suggesting that Ydh1p/Cft2p interacts with the poly(A) site region. Here we show that mutant ydh1 strains are deficient in the recognition of the ACT1 cleavage site in vivo. The C‐terminal domain (CTD) of RNAP II plays a major role in coupling 3′‐end processing and transcription. We provide evidence that Ydh1p/Cft2p interacts with the CTD of RNAP II, several other subunits of CPF and with Pcf11p, a component of CF IA. We propose that Ydh1p/Cft2p contributes to the formation of important interaction surfaces that mediate the dynamic association of CPF with RNAP II, the recognition of poly(A) site sequences and the assembly of the polyadenylation machinery on the RNA substrate.
Resumo:
Aims and objectives To investigate whether physical activity is a protective factor against metabolic syndrome in middle-aged and older women. Background Socio-demographic and lifestyle behaviour factors contribute to metabolic syndrome. To minimise the risk of metabolic syndrome, several global guidelines recommend increasing physical activity level. However, only limited research has investigated the relationship between physical activity levels and metabolic syndrome in middle-aged and older women after adjusting for socio-demographic and lifestyle behaviour factors. Design Cross-sectional design. Methods A convenience sample of 326 middle-aged and older women was recruited. Metabolic syndrome was confirmed according to the National Cholesterol Education Program, Adult Treatment Panel III guidelines, and physical activity levels were measured by the International Physical Activity Questionnaire. Results The sample had a mean age of 60•9 years, and the prevalence of metabolic syndrome was 43•3%. Postmenopausal women and women with low socioeconomic status (low-education background, without personal income and currently unemployed) had a significantly higher risk of developing metabolic syndrome. After adjusting for significant socio-demographic and lifestyle behaviour factors, the women with moderate or high physical activity levels had a significantly lower (OR = 0•10; OR = 0•11, p < 0•001) risk of metabolic syndrome and a lower risk for each specific component of metabolic syndrome, including elevated fasting plasma glucose (OR = 0•29; OR = 0•26, p = 0•009), elevated blood pressure (OR = 0•18; OR = 0•32, p = 0•029), elevated triglycerides (OR = 0•41; OR = 0•15, p = 0•001), reduced high-density lipoprotein (OR = 0•28; OR = 0•27, p = 0•004) and central obesity (OR = 0•31; OR = 0•22, p = 0•027). Conclusions After adjusting for socio-demographic and lifestyle behaviour factors, physical activity level was a significant protective factor against metabolic syndrome in middle-aged and older women. Higher physical activity levels (moderate or high physical activity level) reduced the risk of metabolic syndrome in middle-aged and older women. Relevance to clinical practice Appropriate strategies should be developed to encourage middle-aged and older women across different socio-demographic backgrounds to engage in moderate or high levels of physical activity to reduce the risk of metabolic syndrome.
Resumo:
Protein molecular motors are natural nano-machines that convert the chemical energy from the hydrolysis of adenosine triphosphate into mechanical work. These efficient machines are central to many biological processes, including cellular motion, muscle contraction and cell division. The remarkable energetic efficiency of the protein molecular motors coupled with their nano-scale has prompted an increasing number of studies focusing on their integration in hybrid micro- and nanodevices, in particular using linear molecular motors. The translation of these tentative devices into technologically and economically feasible ones requires an engineering, design-orientated approach based on a structured formalism, preferably mathematical. This contribution reviews the present state of the art in the modelling of protein linear molecular motors, as relevant to the future design-orientated development of hybrid dynamic nanodevices. © 2009 The Royal Society of Chemistry.
Resumo:
There is increasing awareness and concern about law students' elevated distress levels amongst members of the Australian legal academy and the broader legal community. Disproportionately high levels of psychological distress, including depression, anxiety, and substance abuse, have been consistently documented in decades of research on American law student samples. Questions about whether these trends were an American phenomenon, and due to 'differences in demographics, pedagogy and culture' may not apply to Australian law students, began to be empirically addressed with the publication of the Brain and Mind Research Institute's Courting the Blues monograph in 2009. Amongst other findings, the comprehensive research in this monograph indicated that more than one-third of the surveyed law students from Australian universities experience high levels of psychological distress. Recent empirical research at a number of individual Australian law schools reveals similar trends, suggesting that aspects of the legal education experience may contribute to widespread distress levels amongst law students in Australia, as in the United States.
Resumo:
Background The VEGF pathway has become an important therapeutic target in lung cancer, where VEGF has long been established as a potent pro-angiogenic growth factor expressed by many types of tumors. While Bevacizumab (Avastin) has proven successful in increasing the objective tumor response rate and in prolonging progression and overall survival in patients with NSCLC, the survival benefit is however relatively short and the majority of patients eventually relapse. The current use of tyrosine kinase inhibitors alone and in combination with chemotherapy has been underwhelming, highlighting an urgent need for new targeted therapies. In this study, we examined the mechanisms of VEGF-mediated survival in NSCLC cells and the role of the Neuropilin receptors in this process. Methods NSCLC cells were screened for expression of VEGF and its receptors. The effects of recombinant VEGF and its blockade on lung tumor cell proliferation and cell cycle were examined. Phosphorylation of Akt and Erk1/2 proteins was examined by high content analysis and confocal microscopy. The effects of silencing VEGF on cell proliferation and survival signaling were also assessed. A Neuropilin-1 stable-transfected cell line was generated. Cell growth characteristics in addition to pAkt and pErk1/2 signaling were studied in response to VEGF and its blockade. Tumor growth studies were carried out in nude mice following subcutaneous injection of NP1 over-expressing cells. Results Inhibition of the VEGF pathway with anti-VEGF and anti-VEGFR-2 antibodies or siRNA to VEGF, NP1 and NP2 resulted in growth inhibition of NP1 positive tumor cell lines associated with down-regulation of PI3K and MAPK kinase signaling. Stable transfection of NP1 negative cells with NP1 induced proliferation in vitro, which was further enhanced by exogenous VEGF. In vivo, NP1 over-expressing cells significantly increased tumor growth in xenografts compared to controls. Conclusions Our data demonstrate that VEGF is an autocrine growth factor in NSCLC signaling, at least in part, through NP1. Targeting this VEGF receptor may offer potential as a novel therapeutic approach and also support the evaluation of the role of NP1 as a biomarker predicting sensitivity or resistance to VEGF and VEGFR-targeted therapies in the clinical arena.
Resumo:
There are currently 23,500 level crossings in Australia, broadly divided into one of two categories: active level crossings which are fully automatic and have boom barriers, alarm bells, flashing lights, and pedestrian gates; and passive level crossings, which are not automatic and aim to control road and pedestrianised walkways solely with stop and give way signs. Active level crossings are considered to be the gold standard for transport ergonomics when grade separation (i.e. constructing an over- or underpass) is not viable. In Australia, the current strategy is to annually upgrade passive level crossings with active controls but active crossings are also associated with traffic congestion, largely as a result of extended closure times. The percentage of time level crossings are closed to road vehicles during peak periods increases with the rise in the frequency of train services. The popular perception appears to be that once a level crossing is upgraded, one is free to wipe their hands and consider the job done. However, there may also be environments where active protection is not enough, but where the setting may not justify the capital costs of grade separation. Indeed, the associated congestion and traffic delay could compromise safety by contributing to the risk taking behaviour by motorists and pedestrians. In these environments it is important to understand what human factor issues are present and ask the question of whether a one size fits all solution is indeed the most ergonomically sound solution for today’s transport needs.
Resumo:
This paper presents an approach for dynamic state estimation of aggregated generators by introducing a new correction factor for equivalent inter-area power flows. The spread of generators from the center of inertia of each area is summarized by the correction term α on the equivalent power flow between the areas and is applied to the identification and estimation process. A nonlinear time varying Kalman filter is applied to estimate the equivalent angles and velocities of coherent areas by reducing the effect of local modes on the estimated states. The approach is simulated on two test systems and the results show the effect of the correction factor and the performance of the state estimation by estimating the inter-area dynamics of the system.
Resumo:
This paper presents a new algorithm for the step-size change of instantaneous adaptive delta modulator. The present strategy is such that the step-size at any sampling instant can increase or decrease by either of the two constant factors or can remain the same, depending upon the combination of three or four most recent output bits. The quantizer has been simulated on a digital computer, and its performance compared with other quantizers. The figure of merit used is the SNR with gaussian signals as the input. The results indicate that the new design can give an improved SNR over a wider dynamic range and fast response to step inputs, as compared to the earlier systems.